Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1975 May;55(5):932–936. doi: 10.1104/pp.55.5.932

Concurrent Comparisons of Stomatal Behavior, Water Status, and Evaporation of Maize in Soil at High or Low Water Potential

Neil C Turner a,1
PMCID: PMC541736  PMID: 16659194

Abstract

Concurrent measurements of evaporation, leaf conductance, irradiance, leaf water potential, and osmotic potential of maize (Zea mays L. cv. Pa602A) in soil at either high or low soil water potential were compared at several hours on two consecutive days in July. Hourly evaporation, measured on two weighing lysimeters, was similar until 1000 hours Eastern Standard Time, but thereafter evaporation from the maize in the dry soil was always less than that in the wet soil; before noon it was 62% and by midafternoon, only 35% of that in the wet soil. The leaf water potential, measured with a pressure chamber, was between −1.2 and −2.5 bars and between −6.8 and −8 bars at sunrise (about 0530 hours Eastern Standard Time) in the plants in the wet and dry soil, respectively, but decreased quickly to between −8 and −13 bars in the plants in the wet soil and to less than −15 bars in the plants in the dry soil by 1100 to 1230 hours Eastern Standard Time. At this time, the leaf conductance of all leaves was less than 0.1 cm sec−1 in the maize in the dry soil, whereas the conductance was 0.3 to 0.4 cm sec−1 in the leaves near the top of the canopy in the wet soil. The osmotic potential, measured with a vapor pressure osmometer, also decreased during the morning but to a smaller degree than leaf water potential, so that by 1100 to 1230 hours Eastern Standard Time the leaf turgor potential was 1 to 2 bars in all plants. Thereafter, leaf turgor potential increased, particularly in the plants in soil at a high water potential, whereas leaf water potential continued to decrease even in the maize leaves with partly closed stomata. Evidently maize can have values of leaf conductance differing 3- to 4- fold at the same leaf turgor potential, which suggests that stomata do not respond primarily to bulk leaf turgor potential. Evidence for some osmotic adjustment in the plants at low soil water potential is presented. Although the degree of stomatal closure in the maize in dry soil did not prevent further development of stress, it did decrease evaporation in proportion to the decrease in canopy conductance.

Full text

PDF
932

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyer J. S. Relationship of water potential to growth of leaves. Plant Physiol. 1968 Jul;43(7):1056–1062. doi: 10.1104/pp.43.7.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Jordan W. R., Ritchie J. T. Influence of soil water stress on evaporation, root absorption, and internal water status of cotton. Plant Physiol. 1971 Dec;48(6):783–788. doi: 10.1104/pp.48.6.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Kanemasu E. T., Tanner C. B. Stomatal diffusion resistance of snap beans. I. Influence of leaf-water potential. Plant Physiol. 1969 Nov;44(11):1547–1552. doi: 10.1104/pp.44.11.1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Turner N. C., Begg J. E. Stomatal Behavior and Water Status of Maize, Sorghum, and Tobacco under Field Conditions: I. At High Soil Water Potential. Plant Physiol. 1973 Jan;51(1):31–36. doi: 10.1104/pp.51.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Turner N. C. Stomatal Behavior and Water Status of Maize, Sorghum, and Tobacco under Field Conditions: II. At Low Soil Water Potential. Plant Physiol. 1974 Mar;53(3):360–365. doi: 10.1104/pp.53.3.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Waggoner P. E., Bravdo B. A. Stomata and the hydrologic cycle. Proc Natl Acad Sci U S A. 1967 Apr;57(4):1096–1102. doi: 10.1073/pnas.57.4.1096. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES