Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1975 Jun;55(6):1018–1022. doi: 10.1104/pp.55.6.1018

Microbody-marker Enzymes during Transition from Phototrophic to Organotrophic Growth in Euglena1

Neville Collins a, Michael J Merrett a
PMCID: PMC541758  PMID: 16659202

Abstract

Transfer of Euglena gracilis Klebs Z cells from phototrophic to organotrophic growth on acetate results in derepression of the key enzymes of the glyoxylate cycle, malate synthase and isocitrate lyase, which appear coordinately regulated. The derepression of malate synthase and isocitrate lyase was accompanied by increased specific activities of succinate dehydrogenase, fumarase, and malate dehydrogenase, but hydroxypyruvate reductase activity was unaltered.

Isolation of organelles from broken cell suspensions of cells grown heterotrophically on acetate was achieved by isopycnic centrifugation on sucrose gradients. Peaks of mitochondrial enzymes were obtained at equilibrium densities of 1.22 g cm3 and 1.16 g cm3, and although significant differences in the distribution of tricarboxylic acid cycle enzymes between these two peaks were not recorded adenosine triphosphatase activity was detected only in the less dense fraction (1.16 g cm3) showing this contained damaged mitochondria. The peak of particulate glyoxylate cycle enzymes was at an equilibrium density of 1.25 g cm3, this being the same as that for glycolate pathway enzymes from phototrophic cells. Citrate synthase, isocitrate lyase, malate synthase, and malate dehydrogenase were all present in this fraction so it was concluded that Euglena glyoxysomes contain a complete glyoxylate cycle.

Full text

PDF
1018

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armitt S., Roberts C. F., Kornberg H. L. The role of isocitrate lyase in Aspergillus Nidulans. FEBS Lett. 1970 Apr 16;7(3):231–234. doi: 10.1016/0014-5793(70)80168-5. [DOI] [PubMed] [Google Scholar]
  2. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Atkinson A., Gatenby A. D., Lowe A. G. The determination of inorganic orthophosphate in biological systems. Biochim Biophys Acta. 1973 Aug 17;320(1):195–204. doi: 10.1016/0304-4165(73)90178-5. [DOI] [PubMed] [Google Scholar]
  4. Breidenbach R. W., Beevers H. Association of the glyoxylate cycle enzymes in a novel subcellular particle from castor bean endosperm. Biochem Biophys Res Commun. 1967 May 25;27(4):462–469. doi: 10.1016/s0006-291x(67)80007-x. [DOI] [PubMed] [Google Scholar]
  5. Breidenbach R. W., Kahn A., Beevers H. Characterization of glyoxysomes from castor bean endosperm. Plant Physiol. 1968 May;43(5):705–713. doi: 10.1104/pp.43.5.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brody M., White J. E. Environmental factors controlling enzymatic activity in microbodies and mitochondria of Euglena gracilis. FEBS Lett. 1972 Jun 15;23(2):149–152. doi: 10.1016/0014-5793(72)80327-2. [DOI] [PubMed] [Google Scholar]
  7. Calvayrac R., Butow R. A., Lefort-Tran M. Cyclic replication of DNA and changes in mitochondrial morphology during the cell cycle of Euglena gracilis (Z). Exp Cell Res. 1972;71(2):422–432. doi: 10.1016/0014-4827(72)90312-6. [DOI] [PubMed] [Google Scholar]
  8. Codd G. A., Schmid G. H., Kowallik W. Further enzymic studies and electron microscopy of the microbodies of a mutant of Chlorella vulgaris. Arch Mikrobiol. 1973;92(1):21–38. doi: 10.1007/BF00409508. [DOI] [PubMed] [Google Scholar]
  9. Cook J. R. Properties of partially purified malate synthase for Euglena gracilis. J Protozool. 1970 May;17(2):232–235. doi: 10.1111/j.1550-7408.1970.tb02362.x. [DOI] [PubMed] [Google Scholar]
  10. Cooper T. G., Beevers H. Mitochondria and glyoxysomes from castor bean endosperm. Enzyme constitutents and catalytic capacity. J Biol Chem. 1969 Jul 10;244(13):3507–3513. [PubMed] [Google Scholar]
  11. Graves L. B., Jr, Hanzely L., Trelease R. N. The occurrence and fine structural characterization of microbodies in Euglena gracilis. Protoplasma. 1971;72(2):141–152. doi: 10.1007/BF01279047. [DOI] [PubMed] [Google Scholar]
  12. Graves L. B., Jr, Trelease R. N., Grill A., Becker W. M. Localization of glyoxylate cycle enzymes in glyoxysomes in Euglena. J Protozool. 1972 Aug;19(3):527–532. doi: 10.1111/j.1550-7408.1972.tb03521.x. [DOI] [PubMed] [Google Scholar]
  13. Harrop L. C., Kornberg H. L. The role of isocitrate lyase in the metabolism of algae. Proc R Soc Lond B Biol Sci. 1966 Nov 15;166(1002):11–29. doi: 10.1098/rspb.1966.0082. [DOI] [PubMed] [Google Scholar]
  14. Kagawa Y., Racker E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. X. Correlation of morphology and function in submitochondrial particles. J Biol Chem. 1966 May 25;241(10):2475–2482. [PubMed] [Google Scholar]
  15. Kornberg H. L. The role and control of the glyoxylate cycle in Escherichia coli. Biochem J. 1966 Apr;99(1):1–11. doi: 10.1042/bj0990001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Lord J. M., McFadden B. A., Kornberg H. L. Changes in microbody-marker enzymes during growth of Tetrahymena pyriformis E. Proc R Soc Lond B Biol Sci. 1974 Jan 22;185(1078):19–31. doi: 10.1098/rspb.1974.0003. [DOI] [PubMed] [Google Scholar]
  18. Lord J. M., Merrett M. J. The intracellular localization of glycollate oxidoreductase in Euglena gracilis. Biochem J. 1971 Sep;124(2):275–281. doi: 10.1042/bj1240275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pulich W. M., Ward C. H. Physiology and Ultrastructure of an Oxygen-resistant Chlorella Mutant under Heterotrophic Conditions. Plant Physiol. 1973 Feb;51(2):337–344. doi: 10.1104/pp.51.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stabenau H., Beevers H. Isolation and Characterization of Microbodies from the Alga Chlorogonium elongatum. Plant Physiol. 1974 Jun;53(6):866–869. doi: 10.1104/pp.53.6.866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stewart K. D., Floyd G. L., Mattox K. R., Davis M. E. Cytochemical demonstration of a single peroxisome in a filamentous green alga. J Cell Biol. 1972 Aug;54(2):431–434. doi: 10.1083/jcb.54.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tolbert N. E., Yamazaki R. K. Leaf peroxisomes and their relation to photorespiration and photosynthesis. Ann N Y Acad Sci. 1969 Dec 19;168(2):325–341. doi: 10.1111/j.1749-6632.1969.tb43119.x. [DOI] [PubMed] [Google Scholar]
  23. Yamamoto Y., Beevers H. Malate Synthetase in Higher Plants. Plant Physiol. 1960 Jan;35(1):102–108. doi: 10.1104/pp.35.1.102. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES