Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1975 Jun;55(6):1079–1081. doi: 10.1104/pp.55.6.1079

The Role of Cytokinins in Chloroplast Lamellar Development 1

Randall S Alberte a,2, Aubrey W Naylor a
PMCID: PMC541770  PMID: 16659214

Abstract

The accumulation of chlorophyll, production of two specific lamellar chlorophyll-protein complexes, onset of O2 evolution, and detection of P700 were examined in intact Jack bean (Canavalia ensiformis [L.] D.C.) leaves treated with 10−5m kinetin or benzyladenine and allowed to green under low (30-35%) and high (80-85%) relative humidity. In contrast to reports of the promotion of chlorophyll accumulation by cytokinin treatment in excised tissue or cotyledons, intact greening leaves showed neither promotion of chlorophyll accumulation nor alteration in formation of the lamellar chlorophyll-protein complexes or development of photosynthetic function. Furthermore, cytokinin was ineffective in relieving the consequences of low relative humidity water stress on chlorophyll accumulation and on the formation of at least one lamellar chlorophyll-protein.

Full text

PDF
1079

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberte R. S., Fiscus E. L., Naylor A. W. The effects of water stress on the development of the photosynthetic apparatus in greening leaves. Plant Physiol. 1975 Feb;55(2):317–321. doi: 10.1104/pp.55.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alberte R. S., Thornber J. P., Naylor A. W. Biosynthesis of the photosystem I chlorophyll-protein complex in greening leaves of higher plants. Proc Natl Acad Sci U S A. 1973 Jan;70(1):134–137. doi: 10.1073/pnas.70.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ben-Zioni A., Itai C., Vaadia Y. Water and salt stresses, kinetin and protein synthesis in tobacco leaves. Plant Physiol. 1967 Mar;42(3):361–365. doi: 10.1104/pp.42.3.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bourque D. P., Naylor A. W. Large Effects of Small Water Deficits on Chlorophyll Accumulation and Ribonucleic Acid Synthesis in Etiolated Leaves of Jack Bean (Canavalia ensiformis [L.] DC.). Plant Physiol. 1971 Apr;47(4):591–594. doi: 10.1104/pp.47.4.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ecklund P. R., Moore T. C. Correlations of Growth Rate and De-etiolation with Rate of Ent-Kaurene Biosynthesis in Pea (Pisum sativum L.). Plant Physiol. 1974 Jan;53(1):5–10. doi: 10.1104/pp.53.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Itai C., Vaadia Y. Cytokinin Activity in Water-stressed Shoots. Plant Physiol. 1971 Jan;47(1):87–90. doi: 10.1104/pp.47.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kirkham M. B., Gardner W. R., Gerloff G. C. Internal Water Status of Kinetin-treated, Salt-stressed Plants. Plant Physiol. 1974 Feb;53(2):241–243. doi: 10.1104/pp.53.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mlodzianowski F., Kwintkiewicz M. The inhibition of kohlrabi chloroplast degeneration by kinetin. Protoplasma. 1973;76(2):211–226. doi: 10.1007/BF01280698. [DOI] [PubMed] [Google Scholar]
  10. Shiozawa J. A., Alberte R. S., Thornber J. P. The P700-chlorophyll a-protein. Isolation and some characteristics of the complex in higher plants. Arch Biochem Biophys. 1974 Nov;165(1):388–397. doi: 10.1016/0003-9861(74)90177-5. [DOI] [PubMed] [Google Scholar]
  11. Thornber J. P., Highkin H. R. Composition of the photosynthetic apparatus of normal barley leaves and a mutant lacking chlorophyll b. Eur J Biochem. 1974 Jan 3;41(1):109–116. doi: 10.1111/j.1432-1033.1974.tb03250.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES