Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1975 Jun;55(6):1110–1114. doi: 10.1104/pp.55.6.1110

Plant Desiccation and Protein Synthesis

II. On the Relationship between Endogenous Adenosine Triphosphate Levels and Protein-synthesizing Capacity 1

J Derek Bewley a, Edward A Gwóźdź a,2
PMCID: PMC541777  PMID: 16659221

Abstract

Rehydration of Tortula ruralis in 2,4-dinitrophenol inhibits protein synthesis, polysome formation, and ATP production. Polysomes are conserved intact and are active in vitro in hydrated Tortula placed in this chemical, although in vivo protein synthesis is inhibited. Hydrated moss placed under nitrogen in the dark shows a reduced capacity for ATP and protein synthesis, but polysomes are conserved. During anaerobiosis in light, ATP and protein synthesis are unaffected. Rehydration of slow-dried Tortula in nitrogen in the dark results in reduced in vivo protein synthesis, but not polysome formation; this reduction is much less in the light. Slow-dried moss, but not fast-dried, has a greatly reduced ATP content in the dry state, but this rapidly returns to normal levels on rehydration. The prolonged burst in respiration observed previously on rehydration of Tortula is not paralleled by ATP accumulation. Changes in energy charge in all treatments tested follow the changes in ATP. The aquatic moss, Hygrohypnum luridum, which is intolerant to drought, loses ATP during fast drying and this is not replenished on subsequent rehydration.

We consider that the relationship between levels of ATP and protein synthesis is more meaningful during rehydration of mosses (the time when repair to desiccation-induced cellular damage can occur) than during desiccation, and that drought-induced cessation of protein synthesis may not be mediated directly through ATP availability.

Full text

PDF
1110

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Addanki S., Sotos J. F., Rearick P. D. Rapid determination of picomole quantities of ATP with a liquid scintillation counter. Anal Biochem. 1966 Feb;14(2):261–264. doi: 10.1016/0003-2697(66)90135-7. [DOI] [PubMed] [Google Scholar]
  2. Bewley J. D. Polyribosomes Conserved during Desiccation of the Moss Tortula ruralis Are Active. Plant Physiol. 1973 Feb;51(2):285–288. doi: 10.1104/pp.51.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chapman A. G., Fall L., Atkinson D. E. Adenylate energy charge in Escherichia coli during growth and starvation. J Bacteriol. 1971 Dec;108(3):1072–1086. doi: 10.1128/jb.108.3.1072-1086.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ching T. M., Ching K. K. Content of adenosine phosphates and adenylate energy charge in germinating ponderosa pine seeds. Plant Physiol. 1972 Nov;50(5):536–540. doi: 10.1104/pp.50.5.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gwódź E. A., Bewley J. D. Plant desiccation and protein synthesis: an in vitro system from dry and hydrated mosses using endogenous and synthetic messenger ribonucleic Acid. Plant Physiol. 1975 Feb;55(2):340–345. doi: 10.1104/pp.55.2.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lin C. Y., Key J. L. Dissocation and reassembly of polyribosomes in relation to protein synthesis in the soybean root. J Mol Biol. 1967 Jun 14;26(2):237–247. doi: 10.1016/0022-2836(67)90294-x. [DOI] [PubMed] [Google Scholar]
  7. Moreland D. E., Hussey G. G., Shriner C. R., Farmer F. S. Adenosine Phosphates in Germinating Radish (Raphanus sativus L.) Seeds. Plant Physiol. 1974 Oct;54(4):560–563. doi: 10.1104/pp.54.4.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Obendorf R. L., Marcus A. Rapid Increase in Adenosine 5'-Triphosphate during Early Wheat Embryo Germination. Plant Physiol. 1974 May;53(5):779–781. doi: 10.1104/pp.53.5.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Seal S. N., Bewley J. D., Marcus A. Protein chain initiation in wheat embryo. Resolution and function of the soluble factors. J Biol Chem. 1972 Apr 25;247(8):2592–2597. [PubMed] [Google Scholar]
  10. St John J. B. Determination of ATP in Chlorella with the luciferin-luciferase enzyme system. Anal Biochem. 1970 Oct;37(2):409–416. doi: 10.1016/0003-2697(70)90066-7. [DOI] [PubMed] [Google Scholar]
  11. Tucker E. B., Bewley J. D. The site of protein synthesis in the moss Tortula ruralis on recovery from desiccation. Can J Biochem. 1974 Apr;52(4):345–348. doi: 10.1139/o74-052. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES