Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1975 Sep;56(3):345–350. doi: 10.1104/pp.56.3.345

Ribulose Diphosphate Carboxylase from Autotrophic Euglena gracilis

Hannah Rabinowitz 1, Avi Reisfeld 1, Daphna Sagher 1, Marvin Edelman 1
PMCID: PMC541820  PMID: 16659300

Abstract

Ribulose 1,5-diphosphate carboxylase (RUDPcase) from autotrophically grown Euglena gracilis was purified to homogeneity as measured by analytical ultracentrifugation, polyacrylamide gel electrophoresis, and immunoprecipitation reactions. The enzyme represented about 9% of total protein and 24% of soluble protein in the autotrophic cell. Light-grown, heterotrophic cells seemed to contain considerably less RUDPcase. Native carboxylase from autotrophic Euglena showed an s20, w at low protein concentrations of 17 to 17.5, suggesting a molecular weight of >500,000 daltons. Upon denaturation, the enzyme dissociated into two subunits having different amino acid compositions and molecular weights of 59,000 and 12,000 daltons. Based upon the amino acid mass ratios, a quaternary organization of 7 to 8 large and 8 to 10 small subunits per native enzyme molecule was indicated.

The phylogenetic relationship of carboxylase from Euglena and from three higher plants was investigated. In general, the size, subunit formation, and quaternary structure of RUDPcase from the various sources seemed to be similar. A partial immunochemical reaction between anti-RUDPcase serum from Euglena and the enzymes from lettuce, cucumber, and New Zealand spinach suggested that the algal and higher plant carboxylases were related but not identical. This was borne out by amino acid analyses which showed a close correspondence between the large, but not the small, subunits of Euglena and lettuce.

Full text

PDF
345

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews T. J., Lorimer G. H., Tolbert N. E. Ribulose diphosphate oxygenase. I. Synthesis of phosphoglycolate by fraction-1 protein of leaves. Biochemistry. 1973 Jan 2;12(1):11–18. doi: 10.1021/bi00725a003. [DOI] [PubMed] [Google Scholar]
  2. BRAWERMAN G., POGO A. O., CHARGAFF E. Induced formation of ribonucleic acids and plastid protein in Euglena gracilis under the influence of light. Biochim Biophys Acta. 1962 Mar 5;55:326–334. doi: 10.1016/0006-3002(62)90787-4. [DOI] [PubMed] [Google Scholar]
  3. Blair G. E., Ellis R. J. Protein synthesis in chloroplasts. I. Light-driven synthesis of the large subunit of fraction I protein by isolated pea chloroplasts. Biochim Biophys Acta. 1973 Aug 24;319(2):223–234. doi: 10.1016/0005-2787(73)90013-0. [DOI] [PubMed] [Google Scholar]
  4. Degani Y., Atsmon D. Enhancement of non-nuclear DNA synthesis associated with hormone-induced elongation in the cucumber hypocotyl. Exp Cell Res. 1970 Jul;61(1):226–229. doi: 10.1016/0014-4827(70)90283-1. [DOI] [PubMed] [Google Scholar]
  5. EDELMAN M., SCHIFF J. A., EPSTEIN H. T. STUDIES OF CHLOROPLAST DEVELOPMENT IN EUGLENA. XII. TWO TYPES OF SATELLITE DNA. J Mol Biol. 1965 Apr;11:769–774. doi: 10.1016/s0022-2836(65)80034-1. [DOI] [PubMed] [Google Scholar]
  6. Eder J. Isoelectric focusing of antibodies in polyacrylamide gels. J Immunol Methods. 1972 Nov;2(1):67–74. doi: 10.1016/0022-1759(72)90019-1. [DOI] [PubMed] [Google Scholar]
  7. Edmunds L. N., Jr Studies on synchronously dividing cultures of Euglena gracilis Klebs (strain Z). II. Patterns of biosynthesis during the cell cycle. J Cell Physiol. 1965 Oct;66(2):159–181. doi: 10.1002/jcp.1030660205. [DOI] [PubMed] [Google Scholar]
  8. Goldthwaite J. J., Bogorad L. A one-step method for the isolation and determination of leaf ribulose-1,5-diphosphate carboxylase. Anal Biochem. 1971 May;41(1):57–66. doi: 10.1016/0003-2697(71)90191-6. [DOI] [PubMed] [Google Scholar]
  9. Gray J. C., Kekwick R. G. Synthesis of the small subunit of ribulose 1,5-diphosphate carboxylase on cytoplasmic ribosomes from greening bean leaves. FEBS Lett. 1973 Dec 15;38(1):67–69. doi: 10.1016/0014-5793(73)80515-0. [DOI] [PubMed] [Google Scholar]
  10. Harris E. H., Preston J. F., Eisenstadt J. M. Amino acid incorporation and products of protein synthesis in isolated chloroplasts of Euglena gracilis. Biochemistry. 1973 Mar 13;12(6):1227–1234. doi: 10.1021/bi00730a033. [DOI] [PubMed] [Google Scholar]
  11. Kleinkopf G. E., Huffaker R. C., Matheson A. A simplified purification and some properties of ribulose 1,5-diphosphate carboxylase from barley. Plant Physiol. 1970 Aug;46(2):204–207. doi: 10.1104/pp.46.2.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kuehn G. D., McFadden B. A. Ribulose 1,5-diphosphate carboxylase from Hydrogenomonas eutropha and Hydrogenomonas facilis. II. Molecular weight, subunits, composition, and sulfhydryl groups. Biochemistry. 1969 Jun;8(6):2403–2408. doi: 10.1021/bi00834a022. [DOI] [PubMed] [Google Scholar]
  13. Kung S. D., Sakano K., Wildman S. G. Multiple peptide composition of the large and small subunits of Nicotiana tabacum fraction I protein ascertained by fingerprinting and electrofocusing. Biochim Biophys Acta. 1974 Sep 13;365(1):138–147. doi: 10.1016/0005-2795(74)90258-x. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. McFadden B. A. Autotrophic CO2 assimilation and the evolution of ribulose diphosphate carboxylase. Bacteriol Rev. 1973 Sep;37(3):289–319. doi: 10.1128/br.37.3.289-319.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Paulsen J. M., Lane M. D. Spinach ribulose diphosphate carboxylase. I. Purification and properties of the enzyme. Biochemistry. 1966 Jul;5(7):2350–2357. doi: 10.1021/bi00871a025. [DOI] [PubMed] [Google Scholar]
  17. Rutner A. C., Lane M. D. Nonidentical subunits of ribulose diphosphate carboxylase. Biochem Biophys Res Commun. 1967 Aug 23;28(4):531–537. doi: 10.1016/0006-291x(67)90346-4. [DOI] [PubMed] [Google Scholar]
  18. Sagher D., Edelman M., Jakob K. M. Poly(A)-associated RNA in plants. Biochim Biophys Acta. 1974 Apr 27;349(1):32–38. doi: 10.1016/0005-2787(74)90005-7. [DOI] [PubMed] [Google Scholar]
  19. Shneyour A., Avron M. High biological activity in chloroplasts from Euglena gracilis prepared with a new gas pressure device. FEBS Lett. 1970 Jun 1;8(3):164–166. doi: 10.1016/0014-5793(70)80253-8. [DOI] [PubMed] [Google Scholar]
  20. Tabita R. F., Stevens S. E., Jr, Quijano R. D-ribulose 1, 5-diphosphate carboxylase from blue-green algae. Biochem Biophys Res Commun. 1974 Nov 6;61(1):45–52. doi: 10.1016/0006-291x(74)90531-2. [DOI] [PubMed] [Google Scholar]
  21. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES