Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1975 Sep;56(3):420–424. doi: 10.1104/pp.56.3.420

Studies on the Growth Effects of the Canaline-Urea Cycle Amino Acids with Lemna minor L. 1

Gerald A Rosenthal a, Dushyant K Gulati a, P S Sabharwal a
PMCID: PMC541836  PMID: 16659316

Abstract

The aquatic microphyte, Lemna minor L., was utilized to assess the relative toxicity and general growth effects of canavanine, canaline, ureidohomoserine (UHS), and canavaninosuccinate (CSA). These amino acids are constituents of the canaline-urea cycle and structural analogues of the ornithine-urea cycle amino acids.

Comparative growth studies with L. minor revealed that the canaline-urea cycle amino acids are potent antimetabolites. With the exception of CSA, they are extremely toxic at a concentration of 5 μm. Over a concentration range of 1 to 4 μm, canavanine is the most growth-inhibiting of the canaline-urea cycle amino acids. At or above 5 μm, canavanine and canaline possess comparable toxicity. UHS is less growth-inhibiting than canavanine or canaline, and CSA is the least toxic of the canaline-urea cycle intermediates.

Full text

PDF
420

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attias J., Schlesinger M. J., Schlesinger S. The effect of amino acid analogues on alkaline phosphatase formation in Escherichia coli K-12. IV. Substitution of canavanine for arginine. J Biol Chem. 1969 Jul 25;244(14):3810–3817. [PubMed] [Google Scholar]
  2. McMahon D., Langstroth P. The effects of canavanine and of arginine starvation on macromolecular synthesis in Chlamydomonas reinhardi. J Gen Microbiol. 1972 Nov;73(2):239–250. doi: 10.1099/00221287-73-2-239. [DOI] [PubMed] [Google Scholar]
  3. Neurath A. R., Wiener F. P., Rubin B. A., Hartzell R. W. Inhibition of adenovirus replication by canavanine. Biochem Biophys Res Commun. 1970 Dec 24;41(6):1509–1517. doi: 10.1016/0006-291x(70)90558-9. [DOI] [PubMed] [Google Scholar]
  4. Rahiala E. L. Canaline. Characterization of enzyme-pyridoxal phosphate complex. Acta Chem Scand. 1973 Oct;27(10):3861–3867. doi: 10.3891/acta.chem.scand.27-3861. [DOI] [PubMed] [Google Scholar]
  5. Rahiala E. L., Kekomäki M., Jänne J., Raina A., Räihä N. C. Inhibition of pyridoxal enzymes by L-canaline. Biochim Biophys Acta. 1971 Feb 10;227(2):337–343. doi: 10.1016/0005-2744(71)90065-9. [DOI] [PubMed] [Google Scholar]
  6. Richmond M. H. Incorporation of canavanine by Staphylococcus aureus 524 SC. Biochem J. 1959 Oct;73(2):261–264. doi: 10.1042/bj0730261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Richmond M. H. The differential effect of arginine and canavanine on growth and enzyme formation in Staphylococcus aureus 524 SC. Biochem J. 1959 Sep;73(1):155–167. doi: 10.1042/bj0730155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rosenthal G. A. Investigations of Canavanine Biochemistry in the Jack Bean Plant, Canavalia ensiformis (L.) DC: II. Canavanine Biosynthesis in the Developing Plant. Plant Physiol. 1972 Sep;50(3):328–331. doi: 10.1104/pp.50.3.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rosenthal G. A. Preparation and colorimetric analysis of L-canavaninosuccinic acid. Anal Biochem. 1975 May 12;65(1-2):60–65. doi: 10.1016/0003-2697(75)90490-x. [DOI] [PubMed] [Google Scholar]
  10. Rosenthal G. A. Preparation and colorimetric analysis of O-ureido-L-homoserine. Anal Biochem. 1973 Dec;56(2):435–439. doi: 10.1016/0003-2697(73)90209-1. [DOI] [PubMed] [Google Scholar]
  11. Rosenthal G. A. The preparation and colorimetric analysis of L-canaline. Anal Biochem. 1973 Feb;51(2):354–361. doi: 10.1016/0003-2697(73)90488-0. [DOI] [PubMed] [Google Scholar]
  12. STEWARD F. C., POLLARD J. K., PATCHETT A. A., WITKOP B. The effects of selected nitrogen compounds on the growth of plant tissue cultures. Biochim Biophys Acta. 1958 May;28(2):308–317. doi: 10.1016/0006-3002(58)90477-3. [DOI] [PubMed] [Google Scholar]
  13. Schachtele C. F., Rogers P. Canavanine death in Escherichia coli. J Mol Biol. 1965 Dec;14(2):474–489. doi: 10.1016/s0022-2836(65)80197-8. [DOI] [PubMed] [Google Scholar]
  14. Schachtele C. F., Rogers P. Mechanism of canavanine death in Escherichia coli. I. Effect of canvainine on macromolecular synthesis. J Mol Biol. 1968 May 14;33(3):843–860. doi: 10.1016/0022-2836(68)90323-9. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES