Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1975 Oct;56(4):535–539. doi: 10.1104/pp.56.4.535

Effect of Digitonin Concentration on Electron Transport, Phosphorylation, and Proton Uptake by Subchloroplast Particles 1

Simon P Robinson a, Joseph T Wiskich a
PMCID: PMC541863  PMID: 16659339

Abstract

The relative activity of photosystem I subchloroplast particles was dependent on the digitonin concentration used during incubation. At low digitonin concentrations (2 mg digitonin per mg chlorophyll), the particles were greatly enriched in photosystem I activities and showed high rates of cyclic phosphorylation and appreciable light-induced proton uptake. Increasing the concentration of digitonin increased the yield of photosystem I particles but decreased their specific activity of electron transport and of cyclic phosphorylation. The decrease in activity was not related to the degree of enrichment of the pigments associated with photosystem I nor to the degree of separation of the photosystems. Release of plastocyanin was dependent on the digitonin concentration. As the digitonin concentration was increased, the plastocyanin content of the photosystem I particles decreased. The decrease in photochemical activity with increasing digitonin concentration was attributed to the loss of plastocyanin during isolation.

Full text

PDF
535

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. M., Boardman N. K. Fractionation of the photochemical systems of photosynthesis. I. Chlorophyll contents and photochemical activities of particles isolated from spinach chloroplasts. Bibl Laeger. 1966 Mar 14;112(3):403–421. doi: 10.1016/0926-6585(66)90244-5. [DOI] [PubMed] [Google Scholar]
  2. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boardman N. K., Anderson J. M. Fractionation of the photochemical systems of photosynthesis. II. Cytochrome and carotenoid contents of particles isolated from spinach chloroplasts. Biochim Biophys Acta. 1967 Jul 5;143(1):187–203. doi: 10.1016/0005-2728(67)90120-x. [DOI] [PubMed] [Google Scholar]
  4. Hauska G. A., McCarty R. E., Berzborn R. J., Racker E. Partial resolution of the enzymes catalyzing photophosphorylation. VII. The function of plastocyanin and its interaction with a specific antibody. J Biol Chem. 1971 Jun 10;246(11):3524–3531. [PubMed] [Google Scholar]
  5. Hauska G. A., McCarty R. E., Racker E. The site of phosphorylation associated with photosystem. Biochim Biophys Acta. 1970 Mar 3;197(2):206–218. doi: 10.1016/0005-2728(70)90032-0. [DOI] [PubMed] [Google Scholar]
  6. Hauska G. A., Prince R. C. Lipophilicity and catalysis of photophosphorylation. Artificial proton translocation by lipophilic, quinoid hydrogen carriers in chloroplasts and liposomes. FEBS Lett. 1974 Apr 15;41(1):35–39. doi: 10.1016/0014-5793(74)80947-6. [DOI] [PubMed] [Google Scholar]
  7. Hind G., Nakatani H. Y., Izawa S. Light-dependent redistribution of ions in suspensions of chloroplast thylakoid membranes. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1484–1488. doi: 10.1073/pnas.71.4.1484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ke B., Ogawa T., Hiyama T., Vernon L. P. Experimental determination of the molar differential extinction coefficient of P700. Biochim Biophys Acta. 1971 Jan 12;226(1):53–62. doi: 10.1016/0005-2728(71)90177-0. [DOI] [PubMed] [Google Scholar]
  9. Nelson N., Drechsler Z., Neumann J. Photophosphorylation in digitonin subchloroplast particles. Absence of a light-induced pH shift. J Biol Chem. 1970 Jan 10;245(1):143–151. [PubMed] [Google Scholar]
  10. Nelson N., Racker E. Partial resolution of the enzymes catalyzing photophosphorylation. X. Purification of spinach cytochrome f and its photooxidation by resolved photosystem I particles. J Biol Chem. 1972 Jun 25;247(12):3848–3853. [PubMed] [Google Scholar]
  11. Neumann J., Arntzen C. J., Dilley R. A. Two sites for adenosine triphosphate formation in photosynthetic electron transport mediated by photosystem I. Evidence from digitonin subchloroplast particles. Biochemistry. 1971 Mar 2;10(5):866–873. doi: 10.1021/bi00781a021. [DOI] [PubMed] [Google Scholar]
  12. Neumann J., Ke B., Dilley R. A. The relation of the 515 nanometers absorbance change to adenosine triphosphate formation in chloroplasts and digitonin subchloroplast particles. Plant Physiol. 1970 Jul;46(1):86–92. doi: 10.1104/pp.46.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Plesnicar M., Bendall D. S. The plastocyanin content of chloroplasts from some higher plants estimated by a sensitive enzymatic assay. Biochim Biophys Acta. 1970 Aug 4;216(1):192–199. doi: 10.1016/0005-2728(70)90170-2. [DOI] [PubMed] [Google Scholar]
  14. Rntzen C. J., Dilley R. A., Crane F. L. A comparison of chloroplast membrane surfaces visualized by freeze-etch and negative staining techniques; and ultrastructural characterization of membrane fractions obtained from digitonin-treated spinach chloroplasts. J Cell Biol. 1969 Oct;43(1):16–31. doi: 10.1083/jcb.43.1.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Robinson S. P., Wiskich J. T. The effects of digitonin on photochemical activities of isolated chloroplasts. Plant Physiol. 1975 Feb;55(2):163–167. doi: 10.1104/pp.55.2.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Vernon L. P., Shaw E. R. Oxidation of 1,5-diphenylcarbazide as a measure of photosystem 2 activity in subchloroplast fragments. Biochem Biophys Res Commun. 1969 Sep 10;36(6):878–884. doi: 10.1016/0006-291x(69)90285-x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES