Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Apr 4;73(Pt 5):658–663. doi: 10.1107/S2056989017004959

Crystal structures of the polymer precursors 3-(2,5-dimeth­oxy-3,4,6-tri­methyl­phen­yl)propyl methacrylate and 3-(2,4,5-trimethyl-3,6-dioxo­cyclo­hexa-1,4-dien­yl)propyl methacrylate

Shailesh K Goswami a, Lyall R Hanton a, C John McAdam a, Stephen C Moratti a, Jim Simpson a,*
PMCID: PMC5418778  PMID: 28529770

The mol­ecular and crystal structures of 3-(2,5-dimeth­oxy-3,4,6-tri­methyl­phen­yl)propyl methacrylate and 3-(2,4,5-trimethyl-3,6-dioxo­cyclo­hexa-1,4-dien­yl)propyl methacrylate, synthesized as precursors to redox-active polymer gel systems, are reported.

Keywords: crystal structure, methacrylate, di­meth­oxy­benzene, quinone, hydrogen bonds, C—H⋯π contacts

Abstract

The closely related title compounds, 3-(2,5-dimeth­oxy-3,4,6-tri­methyl­phen­yl)propyl methacrylate, C18H26O4 (I), and 3-(2,4,5-trimethyl-3,6-dioxo­cyclo­hexa-1,4-dien­yl)propyl methacrylate, C16H20O4 (II), are monomers suitable for the preparation of redox polymers. They consist of a propyl­methacrylate group and three methyl substituents on di­meth­oxy­benzene and quinone cores, respectively. Both crystal structures feature weak C—H⋯O hydrogen bonds and C—H⋯π(ring) contacts between methyl groups and the six-membered rings.

Chemical context  

The title compounds, (I) and (II), were synthesised as part of our continuing inter­est in redox polymers and electrochemical actuators (Dana et al., 2007; McAdam et al., 2008; Goswami et al., 2013, 2015). Redox-active polymers containing 2,2,6,6-tetra­methyl­piperidin-1-oxyl-4-yl (TEMPO) and ferrocene as pendant groups are well documented (Gracia & Mecerreyes, 2013; Tamura et al., 2008; Schattling et al., 2014). In contrast, polymers with pendant quinone units are less well explored (Hodge & Gautrot, 2009; Häupler et al., 2014). Reasons for this include their free-radical-scavenging properties in free radical polymerization (FRP), and the incompatibility of the quinone carbonyl groups in typical living polymerization such as anionic or cationic polymerization. In previous work (Goswami et al., 2013) we successfully demonstrated that steric hindrance by alkyl groups around a quinone unit prevents radical addition to the ring or the carbonyl oxygen atom, thus enabling FRP synthesis of homo- and co-polymers of quinone-appended methacrylate monomers.

Structural commentary  

Compound (I), a tetra-alkyl­ated p-di­meth­oxy­benzene is shown in Fig. 1. The meth­oxy substituents are in the typical trans conformation (Wickramasinhage et al., 2016; Wiedenfeld et al., 2003; Wieczorek et al., 1975) with a C111—O1⋯O4—C41 torsion angle of approximately 179.24°. Three methyl groups and a propyl methacrylate occupy the other four sites on the benzene ring. Compound (II), shown in Fig. 2, is the quinone analogue of (I). As expected, the oxidation destroys the aromaticity of the six-carbon ring, reflected in a shortening of C2—C3 and C5—C6 and a lengthening of the other ring C—C bonds (Allen et al., 1987).graphic file with name e-73-00658-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of compound (I), with displacement ellipsoids drawn at the 50% probability level.

Figure 2.

Figure 2

The mol­ecular structure of compound (II), with displacement ellipsoids drawn at the 50% probability level.

The spatial arrangement of the ring substituents and the propyl methacrylate moiety is remarkably similar to that observed for (I). In particular, the torsional geometry of the vinyl and carbonyl components of the methacrylate groups of both (I) and (II) display the typical s-trans preference (McAdam et al., 2015). Predictably, both the benzene and quinone ring systems (C1–C6) and the attached atoms (O1, C21, C31, O4, C51 and C7) are nearly planar, with r.m.s. deviations from the mean planes of 0.0377 and 0.0158 Å, respectively.

Supra­molecular features  

Crystal packing for (I)  

In the crystal structure of (I), C21—H21A⋯O1 and C51—H51E⋯O4 hydrogen bonds form chains of mol­ecules along the a-axis direction. The chains are reinforced by C7—H7BCg and C31—H31CCg contacts (Cg is the centroid of the C1–C6 ring) between methyl and methyl­ene group hydrogen atoms and the aromatic ring, Table 1 and Fig. 3. C12—H12B⋯O1 and C41—H41A⋯O10, hydrogen bonds link these chains into a sheet, two-mol­ecules thick, that lies parallel to the ac plane (010), Fig. 4. Extension to a three-dimensional structure is completed by C8—H8B⋯O4 inversion dimers. These form Inline graphic(14) rings and link pairs of double-layer sheets, stacking mol­ecules along the a-axis direction, Fig. 5.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

Cg is the centroid of the C1–C6 benzene ring

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O4i 0.99 2.58 3.456 (4) 147
C12—H12B⋯O1ii 0.95 2.50 3.388 (4) 157
C21—H21A⋯O1iii 0.98 2.67 3.614 (5) 161
C41—H41A⋯O10iv 0.98 2.66 3.590 (5) 159
C51—H51E⋯O4v 0.98 2.65 3.541 (4) 151
C7—H7BCg v 0.99 2.97 3.709 (4) 134
C31—H31CCg iii 0.98 2.85 3.693 (4) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 3.

Figure 3

Chains of mol­ecules of (I) along the a-axis direction.

Figure 4.

Figure 4

A double sheet of mol­ecules of (I) in the ac plane.

Figure 5.

Figure 5

Overall packing for (I) viewed along the a-axis direction.

Crystal packing for (II)  

For (II), an extensive series of C—H⋯O hydrogen bonds and a C—H⋯π(ring) contact generate the three-dimensional structure. These contacts include O10 acting as a trifurcated acceptor; C9—H9B⋯O10 hydrogen bonds, supported by C31—H31BCg contacts (Cg is the centroid of the C1–C6 ring),Table 2, form chains along the a-axis direction, Fig. 6. The other two components of the trifurcate, the inversion-related C9—H9A⋯O10 and C51—H51B⋯O10 hydrogen bonds form Inline graphic(10) and Inline graphic(20) rings, respectively. A third inversion dimer results from C12—H12A⋯O1 contacts and forms Inline graphic(22) rings. O4 acts as a bifurcated acceptor, forming C21—H21A⋯O4 and C31—H31C⋯O4 hydrogen bonds that enclose Inline graphic(7) rings, completing an extensive sheet of mol­ecules parallel to (Inline graphic05), Fig. 7. This eclectic array of contacts combine to produce a three-dimensional network with mol­ecules stacked along the a axis, Fig. 8.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O10i 0.99 2.72 3.624 (3) 153
C9—H9B⋯O10ii 0.99 2.70 3.595 (3) 150
C12—H12A⋯O1iii 0.95 2.53 3.422 (3) 156
C21—H21A⋯O4iv 0.98 2.52 3.455 (3) 161
C31—H31C⋯O4iv 0.98 2.68 3.638 (3) 166
C51—H51B⋯O10v 0.98 2.67 3.510 (3) 144
C31—H31BCg ii 0.98 2.95 3.534 (3) 119

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 6.

Figure 6

Chains of mol­ecules of (II) formed along a.

Figure 7.

Figure 7

Sheets of mol­ecules of (II) viewed along a.

Figure 8.

Figure 8

Overall packing for (II) viewed along the a-axis direction.

Database survey  

A search of the CSD (Version 5.37 November 2015 with three updates; Groom et al., 2016) revealed a surprising degree of exclusivity for both of the title compounds. A search for the 2,5-dimeth­oxy-3,4,6-tri­methyl­phenyl segment of (I) produced only two hits, our earlier report of the precursor 2,5-dimeth­oxy-3,4,6-tri­methyl­benzaldehyde (Wickramasinhage et al., 2016) and the dimer bis­(2,5-dimeth­oxy-3,4,6-tri­methyl­phen­yl)methane (Wiedenfeld et al., 2003). A search for the corresponding quinone ring system was even less productive, with octa­methyl-1,4-cyclo­hexa­nedione the only related structure (Hoffmann & Hursthouse, 1976). Structures containing the propyl methacrylate moiety were similarly scarce, with the fullerene derivative 4-(6,9,12,15,18-penta­methyl-C60fulleren-1-yl)butyl methacrylate di­chloro­methane solvate (Matsuo et al., 2009) and a tungsten polyphosphate derivative (Hasegawa et al., 2007) the only hits.

Synthesis and crystallization  

The synthesis of (I) was accomplished in three steps (Fig. 9) from 6-hy­droxy-5,7,8-tri­methyl­chroman-2-one (III) (Goswami et al., 2011) as described below.

Figure 9.

Figure 9

Steps involved in the synthesis of compound (I).

Methyl­ation of 6-hy­droxy-5,7,8-tri­methyl­chroman-2-one (III): To a solution of (III) (5 g, 24 mmol) and dry K2CO3 (13.4 g, 97 mmol) in MeOH (50 mL) was added MeI (13.8 mL, 97 mmol). The mixture was refluxed for 4 h, filtered through celite, and solvent removed in vacuo to afford methyl 3-(2,5-dimeth­oxy-3,4,6-tri­methyl­phen­yl)propano­ate (IV) (5.5 g, 85%) as a yellow liquid. MS calculated for [C15H22NaO4]+: 289.1410. Found: 289.1391 (6.72 ppm). IR (KBr) νC=O: 1750 cm−1 (methyl ester). 1H NMR (CDCl3, δ ppm): 2.18 (s, 6H, 2 × Ar–CH3), 2.24 (s, 3H, Ar-CH3), 2.49 & 2.95 [2 × (t, J = 7.8 Hz, 2H, CH2)], 3.65 (s, 3H, ester OCH3), 3.68 & 3.71 [2 × (s, 3H, Ar–OCH3)]. 13C NMR (CDCl3, δ ppm): 12.3, 12.8, 13.0, 23.0, 34.5, 51.5, 60.6, 61.1, 127.5, 128.4, 129.2, 130.4, 153.3, 174.0.

Reduction of methyl 3-(2,5-dimeth­oxy-3,4,6-tri­methyl­phen­yl)propano­ate (IV): To a stirred suspension of 0.85 g (22 mmol) of LiAlH4 in 100 mL dry THF cooled to 273 K in ice a solution of 5.0 g (18.7 mmol) of (IV) in 100 mL THF was added dropwise. After the vigorous reaction subsided, the mixture was heated to reflux for 2 h. Excess of the hydride was decomposed by careful addition of water, and the mixture was neutralized with acetic acid. To this was added 650 mL of saturated aq. NH4Cl solution. The organic layer was separated and the aqueous layer further extracted with 4 × 150 mL portions of THF. The combined THF layers were dried over MgSO4 and solvent removed in vacuo. Recrystallization from Et2O gave 4.1 mg (91%) of 3-(2,5-dimeth­oxy-3,4,6-tri­methyl­phen­yl)propan-1-ol (V) as a white solid, m.p. 461–463 K please check. MS calculated for C14H22NaO3]+: 261.1461. Found: 246.1461 (0 ppm). IR (KBr) νOH: 3425, 3150 cm−1. 1H NMR (CDCl3, δ ppm): 1.75 (m, 2H, CH2), 2.09 (s, 1H OH), 2.18 (s, 6H, 2 × Ar–CH3), 2.23 (s, 3H, Ar–CH3), 2.75 (t, J = 7.3 Hz, 2H, Ar–CH2), 3.52 (t, J = 6.6 Hz, 2H, CH2–OH), 3.65 & 3.69 [2 × (s, 3H, Ar–OCH3)]. 13C NMR (CDCl3, δ ppm): 11.7, 12.6, 12.8, 22.6, 32.0, 60.0, 61.0, 61.2, 127.4, 127.6, 128.6, 129.2, 130.4, 153.0, 153.5.

Acyl­ation of 3-(2,5-dimeth­oxy-3,4,6-tri­methyl­phen­yl)propan-1-ol (V): The alcohol (V) (5.0 g, 21 mmol) was dissolved in CH2Cl2 (100 ml). NEt3 (2.2 mL) was added and the solution stirred 30 min at 273 K. Methacryloyl chloride (2.4 g, 23 mmol) was added dropwise, stirred for 2 h under nitro­gen at 273 K and then at room temperature for 4 h. After extraction from CH2Cl2/H2O the organic layer was dried (MgSO4) and solvent removed in vacuo. Purification using chromatography on SiO2 using petroleum ether/EtOAc (9:1) gave the colourless solid product (I), m.p. 395–397 K. MS calculated for [C18H26NaO4]+: 329.1723. Found: 329.1709 (4.41 ppm). IR (KBr) νC=O: 1731 cm−1 (ester). 1H NMR (CDCl3, δ ppm): 1.89 (m, 2H, CH2), 1.98 (m, 3H, CH3), 2.19 (s, 6H, 2 × Ar–CH3), 2.23 (s, 3H, Ar–CH3), 2.73 (t, J = 7.6 Hz, 2H, Ar–CH2), 3.65 & 3.68 [2 × (s, 3H, Ar–OCH3)], 4.23 (t, J = 6.1 Hz, 2H, CH2), 5.57 (m, 1H, =CH), 6.14 (m, 1H, =CH). 13C NMR (CDCl3, δ ppm): 12.2, 12.9, 13.1, 18.6, 24.1, 29.5, 60.3, 61.1, 65.0, 125.4, 127.4, 128.2, 128.8, 131.4, 136.8, 153.20, 153.4, 167.8. Crystals of (I) were obtained from a mixed CH2Cl2/hexane solution 1/1 v/v.

The synthesis of (II) has been reported previously (Goswami et al., 2013). Crystals were obtained from the slow evaporation of an Et2O solution.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were refined using a riding model with d(C—H) = 0.95 Å, U iso = 1.2U eq(C) for vinyl, 0.99 Å, U iso = 1.2U eq(C) for CH2 H atoms and 0.98 Å, U iso = 1.5U eq(C) for CH3 H atoms. The hydrogen atoms of the C13 and C51 methyl groups of (I) were equally disordered over two sites. Idealized disorder models were applied using AFIX123 in SHELXL2014/7. For (I), a low-angle reflection with F o << F c, that may have been affected by the beam-stop, was omitted from the final refinement cycles.

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C18H26O4 C16H20O4
M r 306.39 276.32
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 91 89
a, b, c (Å) 5.1833 (7), 30.341 (4), 10.6339 (15) 4.4096 (2), 11.8425 (6), 28.2511 (16)
β (°) 97.910 (9) 93.495 (3)
V3) 1656.4 (4) 1472.55 (13)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.09 0.09
Crystal size (mm) 0.65 × 0.04 × 0.04 0.27 × 0.14 × 0.13
 
Data collection
Diffractometer Bruker APEXII CCD area detector Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2013) Multi-scan (SADABS; Bruker, 2013)
T min, T max 0.775, 1.00 0.785, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11585, 1681, 1254 16398, 2509, 1774
R int 0.081 0.071
θmax (°) 20.7 24.8
(sin θ/λ)max−1) 0.497 0.591
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.052, 0.138, 1.03 0.049, 0.138, 1.04
No. of reflections 1681 2509
No. of parameters 203 185
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.24 0.34, −0.32

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS2013 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), TITAN (Hunter & Simpson, 1999), Mercury (Macrae et al., 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989017004959/hg5486sup1.cif

e-73-00658-sup1.cif (860KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017004959/hg5486Isup2.hkl

e-73-00658-Isup2.hkl (135.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989017004959/hg5486IIsup3.hkl

e-73-00658-IIsup3.hkl (201KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017004959/hg5486Isup4.cml

Supporting information file. DOI: 10.1107/S2056989017004959/hg5486IIsup5.cml

CCDC references: 1541065, 1541064

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the NZ Ministry of Business, Innovation and Employment Science Investment Fund (grant No. UOOX1206) for support of this work and the University of Otago for the purchase of the diffractometer. JS thanks the Chemistry Department, University of Otago, for the support of his work.

supplementary crystallographic information

(I) 3-(2,5-Dimethoxy-3,4,6-trimethylphenyl)propyl methacrylate. Crystal data

C18H26O4 F(000) = 664
Mr = 306.39 Dx = 1.229 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 5.1833 (7) Å Cell parameters from 1289 reflections
b = 30.341 (4) Å θ = 4.7–40.3°
c = 10.6339 (15) Å µ = 0.09 mm1
β = 97.910 (9)° T = 91 K
V = 1656.4 (4) Å3 Needle, colourless
Z = 4 0.65 × 0.04 × 0.04 mm

(I) 3-(2,5-Dimethoxy-3,4,6-trimethylphenyl)propyl methacrylate. Data collection

Bruker APEXII CCD area detector diffractometer 1681 independent reflections
Radiation source: fine-focus sealed tube 1254 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.081
ω scans θmax = 20.7°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2013) h = −5→5
Tmin = 0.775, Tmax = 1.00 k = −29→29
11585 measured reflections l = −10→10

(I) 3-(2,5-Dimethoxy-3,4,6-trimethylphenyl)propyl methacrylate. Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052 H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0683P)2 + 1.3102P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
1681 reflections Δρmax = 0.34 e Å3
203 parameters Δρmin = −0.24 e Å3

(I) 3-(2,5-Dimethoxy-3,4,6-trimethylphenyl)propyl methacrylate. Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. One low angle reflection with Fo << Fc, that may have been affected by the beam-stop, was omitted from the final refinement cycles.

(I) 3-(2,5-Dimethoxy-3,4,6-trimethylphenyl)propyl methacrylate. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.5070 (7) 0.13988 (12) 0.9190 (3) 0.0223 (10)
O1 0.6011 (5) 0.17928 (8) 0.9780 (2) 0.0255 (7)
C111 0.4922 (8) 0.18964 (12) 1.0910 (4) 0.0324 (11)
H11A 0.3020 0.1872 1.0741 0.049*
H11B 0.5403 0.2198 1.1176 0.049*
H11C 0.5595 0.1690 1.1585 0.049*
C2 0.2886 (7) 0.14223 (11) 0.8270 (3) 0.0213 (10)
C21 0.1425 (7) 0.18507 (12) 0.7978 (4) 0.0296 (10)
H21A −0.0289 0.1831 0.8265 0.044*
H21B 0.1204 0.1904 0.7061 0.044*
H21C 0.2414 0.2094 0.8420 0.044*
C3 0.2007 (7) 0.10363 (12) 0.7625 (3) 0.0198 (10)
C31 −0.0362 (7) 0.10426 (12) 0.6621 (3) 0.0263 (10)
H31A −0.0762 0.0742 0.6321 0.039*
H31B −0.0008 0.1227 0.5908 0.039*
H31C −0.1850 0.1163 0.6984 0.039*
C4 0.3397 (7) 0.06474 (11) 0.7918 (3) 0.0189 (10)
O4 0.2485 (5) 0.02580 (7) 0.7301 (2) 0.0235 (7)
C41 0.3680 (8) 0.01709 (13) 0.6187 (3) 0.0309 (11)
H41A 0.3442 0.0426 0.5617 0.046*
H41B 0.2869 −0.0089 0.5750 0.046*
H41C 0.5545 0.0116 0.6432 0.046*
C5 0.5615 (7) 0.06238 (11) 0.8830 (3) 0.0185 (9)
C51 0.7126 (7) 0.01998 (11) 0.9032 (3) 0.0240 (10)
H51A 0.8608 0.0242 0.9700 0.036* 0.5
H51B 0.5991 −0.0032 0.9287 0.036* 0.5
H51C 0.7763 0.0114 0.8241 0.036* 0.5
H51D 0.6300 −0.0026 0.8452 0.036* 0.5
H51E 0.8918 0.0248 0.8865 0.036* 0.5
H51F 0.7145 0.0101 0.9911 0.036* 0.5
C6 0.6460 (7) 0.10094 (12) 0.9490 (3) 0.0211 (10)
C7 0.8823 (7) 0.10066 (11) 1.0496 (3) 0.0229 (10)
H7A 0.9480 0.1312 1.0626 0.028*
H7B 1.0210 0.0829 1.0188 0.028*
C8 0.8279 (7) 0.08205 (12) 1.1773 (3) 0.0233 (9)
H8A 0.6784 0.0980 1.2044 0.028*
H8B 0.7780 0.0507 1.1660 0.028*
C9 1.0568 (7) 0.08561 (12) 1.2801 (3) 0.0268 (10)
H9A 1.0197 0.0700 1.3574 0.032*
H9B 1.2130 0.0722 1.2517 0.032*
O9 1.1017 (5) 0.13212 (8) 1.3071 (2) 0.0266 (7)
C10 1.3096 (8) 0.14204 (13) 1.3916 (4) 0.0243 (10)
O10 1.4618 (5) 0.11468 (9) 1.4395 (2) 0.0335 (8)
C11 1.3351 (7) 0.19019 (12) 1.4190 (3) 0.0248 (10)
C12 1.1719 (8) 0.21884 (13) 1.3569 (4) 0.0330 (11)
H12A 1.0364 0.2088 1.2941 0.040*
H12B 1.1902 0.2494 1.3753 0.040*
C13 1.5513 (8) 0.20272 (14) 1.5203 (4) 0.0391 (11)
H13A 1.6460 0.1762 1.5525 0.059* 0.5
H13B 1.6707 0.2228 1.4850 0.059* 0.5
H13C 1.4791 0.2174 1.5898 0.059* 0.5
H13D 1.5512 0.2347 1.5324 0.059* 0.5
H13E 1.5265 0.1881 1.5999 0.059* 0.5
H13F 1.7181 0.1936 1.4951 0.059* 0.5

(I) 3-(2,5-Dimethoxy-3,4,6-trimethylphenyl)propyl methacrylate. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.027 (2) 0.023 (2) 0.020 (2) −0.006 (2) 0.012 (2) −0.0020 (18)
O1 0.0321 (16) 0.0217 (16) 0.0244 (16) −0.0032 (12) 0.0100 (13) −0.0026 (12)
C111 0.042 (3) 0.030 (3) 0.028 (3) 0.002 (2) 0.013 (2) −0.0046 (19)
C2 0.022 (2) 0.022 (2) 0.022 (2) 0.0017 (19) 0.010 (2) 0.0053 (18)
C21 0.025 (2) 0.030 (2) 0.034 (2) 0.0009 (19) 0.0036 (19) 0.0006 (19)
C3 0.022 (2) 0.026 (2) 0.013 (2) −0.0025 (19) 0.0075 (18) −0.0001 (18)
C31 0.031 (3) 0.027 (2) 0.022 (2) −0.0015 (19) 0.007 (2) 0.0011 (17)
C4 0.026 (2) 0.017 (2) 0.015 (2) −0.0043 (19) 0.009 (2) −0.0017 (17)
O4 0.0286 (15) 0.0231 (15) 0.0205 (16) −0.0024 (13) 0.0097 (12) −0.0029 (12)
C41 0.039 (3) 0.032 (3) 0.024 (3) −0.003 (2) 0.014 (2) −0.0054 (19)
C5 0.017 (2) 0.020 (2) 0.020 (2) 0.0001 (18) 0.0082 (19) 0.0013 (18)
C51 0.025 (2) 0.024 (2) 0.025 (2) −0.0010 (18) 0.0067 (18) −0.0010 (17)
C6 0.022 (2) 0.024 (2) 0.019 (2) −0.0029 (19) 0.0097 (19) 0.0001 (18)
C7 0.026 (2) 0.020 (2) 0.023 (2) 0.0012 (18) 0.0058 (19) 0.0003 (17)
C8 0.026 (2) 0.023 (2) 0.021 (2) −0.0020 (19) 0.0056 (18) 0.0022 (18)
C9 0.034 (2) 0.022 (2) 0.025 (2) −0.004 (2) 0.0046 (19) −0.0003 (19)
O9 0.0300 (17) 0.0213 (16) 0.0274 (16) −0.0022 (12) 0.0001 (14) −0.0027 (12)
C10 0.024 (3) 0.033 (3) 0.018 (2) −0.002 (2) 0.011 (2) −0.002 (2)
O10 0.0331 (17) 0.0316 (17) 0.0347 (18) 0.0013 (15) 0.0005 (14) 0.0017 (14)
C11 0.025 (2) 0.027 (3) 0.024 (2) 0.001 (2) 0.009 (2) −0.0012 (19)
C12 0.036 (3) 0.026 (3) 0.037 (3) −0.006 (2) 0.008 (2) −0.011 (2)
C13 0.039 (3) 0.037 (3) 0.041 (3) −0.008 (2) 0.005 (2) −0.007 (2)

(I) 3-(2,5-Dimethoxy-3,4,6-trimethylphenyl)propyl methacrylate. Geometric parameters (Å, º)

C1—C2 1.393 (5) C51—H51C 0.9800
C1—C6 1.398 (5) C51—H51D 0.9800
C1—O1 1.406 (4) C51—H51E 0.9800
O1—C111 1.431 (4) C51—H51F 0.9800
C111—H11A 0.9800 C6—C7 1.512 (5)
C111—H11B 0.9800 C7—C8 1.532 (5)
C111—H11C 0.9800 C7—H7A 0.9900
C2—C3 1.401 (5) C7—H7B 0.9900
C2—C21 1.515 (5) C8—C9 1.503 (5)
C21—H21A 0.9800 C8—H8A 0.9900
C21—H21B 0.9800 C8—H8B 0.9900
C21—H21C 0.9800 C9—O9 1.452 (4)
C3—C4 1.395 (5) C9—H9A 0.9900
C3—C31 1.512 (5) C9—H9B 0.9900
C31—H31A 0.9800 O9—C10 1.339 (4)
C31—H31B 0.9800 C10—O10 1.209 (4)
C31—H31C 0.9800 C10—C11 1.492 (5)
C4—C5 1.400 (5) C11—C12 1.324 (5)
C4—O4 1.402 (4) C11—C13 1.493 (5)
O4—C41 1.435 (4) C12—H12A 0.9500
C41—H41A 0.9800 C12—H12B 0.9500
C41—H41B 0.9800 C13—H13A 0.9800
C41—H41C 0.9800 C13—H13B 0.9800
C5—C6 1.403 (5) C13—H13C 0.9800
C5—C51 1.506 (5) C13—H13D 0.9800
C51—H51A 0.9800 C13—H13E 0.9800
C51—H51B 0.9800 C13—H13F 0.9800
C2—C1—C6 123.2 (3) H51A—C51—H51F 56.3
C2—C1—O1 118.0 (3) H51B—C51—H51F 56.3
C6—C1—O1 118.7 (3) H51C—C51—H51F 141.1
C1—O1—C111 114.2 (3) H51D—C51—H51F 109.5
O1—C111—H11A 109.5 H51E—C51—H51F 109.5
O1—C111—H11B 109.5 C1—C6—C5 118.4 (3)
H11A—C111—H11B 109.5 C1—C6—C7 120.5 (3)
O1—C111—H11C 109.5 C5—C6—C7 121.1 (3)
H11A—C111—H11C 109.5 C6—C7—C8 113.6 (3)
H11B—C111—H11C 109.5 C6—C7—H7A 108.9
C1—C2—C3 118.6 (3) C8—C7—H7A 108.9
C1—C2—C21 121.5 (3) C6—C7—H7B 108.9
C3—C2—C21 119.8 (3) C8—C7—H7B 108.9
C2—C21—H21A 109.5 H7A—C7—H7B 107.7
C2—C21—H21B 109.5 C9—C8—C7 113.3 (3)
H21A—C21—H21B 109.5 C9—C8—H8A 108.9
C2—C21—H21C 109.5 C7—C8—H8A 108.9
H21A—C21—H21C 109.5 C9—C8—H8B 108.9
H21B—C21—H21C 109.5 C7—C8—H8B 108.9
C4—C3—C2 118.3 (3) H8A—C8—H8B 107.7
C4—C3—C31 120.8 (3) O9—C9—C8 107.6 (3)
C2—C3—C31 120.8 (3) O9—C9—H9A 110.2
C3—C31—H31A 109.5 C8—C9—H9A 110.2
C3—C31—H31B 109.5 O9—C9—H9B 110.2
H31A—C31—H31B 109.5 C8—C9—H9B 110.2
C3—C31—H31C 109.5 H9A—C9—H9B 108.5
H31A—C31—H31C 109.5 C10—O9—C9 116.3 (3)
H31B—C31—H31C 109.5 O10—C10—O9 123.1 (3)
C3—C4—C5 123.2 (3) O10—C10—C11 123.7 (4)
C3—C4—O4 118.5 (3) O9—C10—C11 113.1 (3)
C5—C4—O4 118.2 (3) C12—C11—C10 120.8 (4)
C4—O4—C41 112.7 (3) C12—C11—C13 123.8 (4)
O4—C41—H41A 109.5 C10—C11—C13 115.3 (3)
O4—C41—H41B 109.5 C11—C12—H12A 120.0
H41A—C41—H41B 109.5 C11—C12—H12B 120.0
O4—C41—H41C 109.5 H12A—C12—H12B 120.0
H41A—C41—H41C 109.5 C11—C13—H13A 109.5
H41B—C41—H41C 109.5 C11—C13—H13B 109.5
C4—C5—C6 118.3 (3) H13A—C13—H13B 109.5
C4—C5—C51 120.3 (3) C11—C13—H13C 109.5
C6—C5—C51 121.3 (3) H13A—C13—H13C 109.5
C5—C51—H51A 109.5 H13B—C13—H13C 109.5
C5—C51—H51B 109.5 C11—C13—H13D 109.5
H51A—C51—H51B 109.5 H13A—C13—H13D 141.1
C5—C51—H51C 109.5 H13B—C13—H13D 56.3
H51A—C51—H51C 109.5 H13C—C13—H13D 56.3
H51B—C51—H51C 109.5 C11—C13—H13E 109.5
C5—C51—H51D 109.5 H13A—C13—H13E 56.3
H51A—C51—H51D 141.1 H13B—C13—H13E 141.1
H51B—C51—H51D 56.3 H13C—C13—H13E 56.3
H51C—C51—H51D 56.3 H13D—C13—H13E 109.5
C5—C51—H51E 109.5 C11—C13—H13F 109.5
H51A—C51—H51E 56.3 H13A—C13—H13F 56.3
H51B—C51—H51E 141.1 H13B—C13—H13F 56.3
H51C—C51—H51E 56.3 H13C—C13—H13F 141.1
H51D—C51—H51E 109.5 H13D—C13—H13F 109.5
C5—C51—H51F 109.5 H13E—C13—H13F 109.5
C2—C1—O1—C111 90.7 (4) C2—C1—C6—C5 0.1 (5)
C6—C1—O1—C111 −93.5 (4) O1—C1—C6—C5 −175.5 (3)
C6—C1—C2—C3 1.0 (5) C2—C1—C6—C7 179.8 (3)
O1—C1—C2—C3 176.7 (3) O1—C1—C6—C7 4.2 (5)
C6—C1—C2—C21 179.6 (3) C4—C5—C6—C1 −1.0 (5)
O1—C1—C2—C21 −4.7 (5) C51—C5—C6—C1 175.4 (3)
C1—C2—C3—C4 −1.3 (5) C4—C5—C6—C7 179.3 (3)
C21—C2—C3—C4 −179.9 (3) C51—C5—C6—C7 −4.2 (5)
C1—C2—C3—C31 179.7 (3) C1—C6—C7—C8 101.6 (4)
C21—C2—C3—C31 1.1 (5) C5—C6—C7—C8 −78.7 (4)
C2—C3—C4—C5 0.4 (5) C6—C7—C8—C9 −174.8 (3)
C31—C3—C4—C5 179.4 (3) C7—C8—C9—O9 66.7 (4)
C2—C3—C4—O4 178.3 (3) C8—C9—O9—C10 −176.0 (3)
C31—C3—C4—O4 −2.7 (5) C9—O9—C10—O10 3.5 (5)
C3—C4—O4—C41 93.9 (4) C9—O9—C10—C11 −177.2 (3)
C5—C4—O4—C41 −88.1 (4) O10—C10—C11—C12 175.3 (4)
C3—C4—C5—C6 0.8 (5) O9—C10—C11—C12 −4.0 (5)
O4—C4—C5—C6 −177.1 (3) O10—C10—C11—C13 −5.4 (5)
C3—C4—C5—C51 −175.7 (3) O9—C10—C11—C13 175.3 (3)
O4—C4—C5—C51 6.4 (5)

(I) 3-(2,5-Dimethoxy-3,4,6-trimethylphenyl)propyl methacrylate. Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C1–C6 benzene ring

D—H···A D—H H···A D···A D—H···A
C8—H8B···O4i 0.99 2.58 3.456 (4) 147
C12—H12B···O1ii 0.95 2.50 3.388 (4) 157
C21—H21A···O1iii 0.98 2.67 3.614 (5) 161
C41—H41A···O10iv 0.98 2.66 3.590 (5) 159
C51—H51E···O4v 0.98 2.65 3.541 (4) 151
C7—H7B···Cgv 0.99 2.97 3.709 (4) 134
C31—H31C···Cgiii 0.98 2.85 3.693 (4) 148

Symmetry codes: (i) −x+1, −y, −z+2; (ii) x+1/2, −y+1/2, z+1/2; (iii) x−1, y, z; (iv) x−1, y, z−1; (v) x+1, y, z.

(II) 3-(2,4,5-Trimethyl-3,6-dioxocyclohexa-1,4-dienyl)propyl methacrylate. Crystal data

C16H20O4 F(000) = 592
Mr = 276.32 Dx = 1.246 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 4.4096 (2) Å Cell parameters from 1562 reflections
b = 11.8425 (6) Å θ = 2.3–21.1°
c = 28.2511 (16) Å µ = 0.09 mm1
β = 93.495 (3)° T = 89 K
V = 1472.55 (13) Å3 Irregular fragment, colourless
Z = 4 0.27 × 0.14 × 0.13 mm

(II) 3-(2,4,5-Trimethyl-3,6-dioxocyclohexa-1,4-dienyl)propyl methacrylate. Data collection

Bruker APEXII CCD area detector diffractometer 1774 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.071
ω scans θmax = 24.8°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2013) h = −5→5
Tmin = 0.785, Tmax = 1.000 k = −13→13
16398 measured reflections l = −31→33
2509 independent reflections

(II) 3-(2,4,5-Trimethyl-3,6-dioxocyclohexa-1,4-dienyl)propyl methacrylate. Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0609P)2 + 0.8066P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2509 reflections Δρmax = 0.34 e Å3
185 parameters Δρmin = −0.32 e Å3

(II) 3-(2,4,5-Trimethyl-3,6-dioxocyclohexa-1,4-dienyl)propyl methacrylate. Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(II) 3-(2,4,5-Trimethyl-3,6-dioxocyclohexa-1,4-dienyl)propyl methacrylate. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1775 (5) 0.16524 (19) 0.14048 (8) 0.0209 (5)
O1 0.0812 (4) 0.09197 (14) 0.11320 (6) 0.0324 (5)
C2 0.3994 (5) 0.13528 (19) 0.18042 (8) 0.0200 (5)
C21 0.4744 (6) 0.01196 (19) 0.18425 (8) 0.0277 (6)
H21A 0.6438 0.0010 0.2079 0.042*
H21B 0.5321 −0.0160 0.1534 0.042*
H21C 0.2964 −0.0297 0.1939 0.042*
C3 0.5109 (5) 0.21672 (19) 0.20975 (8) 0.0200 (5)
C31 0.7283 (6) 0.1988 (2) 0.25224 (8) 0.0273 (6)
H31A 0.6208 0.2090 0.2813 0.041*
H31B 0.8945 0.2537 0.2516 0.041*
H31C 0.8113 0.1221 0.2515 0.041*
C4 0.4110 (5) 0.33563 (19) 0.20215 (8) 0.0211 (5)
O4 0.5126 (4) 0.40980 (14) 0.22879 (6) 0.0306 (4)
C5 0.1881 (5) 0.36569 (18) 0.16246 (8) 0.0194 (5)
C51 0.1114 (6) 0.48890 (19) 0.15805 (9) 0.0280 (6)
H51A −0.0626 0.4987 0.1351 0.042*
H51B 0.2866 0.5302 0.1471 0.042*
H51C 0.0601 0.5182 0.1890 0.042*
C6 0.0734 (5) 0.28445 (18) 0.13349 (8) 0.0189 (5)
C7 −0.1420 (5) 0.3062 (2) 0.09083 (8) 0.0225 (5)
H7A −0.2806 0.3690 0.0979 0.027*
H7B −0.2666 0.2380 0.0839 0.027*
C8 0.0333 (5) 0.33651 (19) 0.04742 (8) 0.0210 (5)
H8A 0.1784 0.3979 0.0562 0.025*
H8B 0.1526 0.2699 0.0384 0.025*
C9 −0.1672 (5) 0.37361 (19) 0.00508 (8) 0.0208 (5)
H9A −0.3057 0.4343 0.0145 0.025*
H9B −0.0408 0.4035 −0.0199 0.025*
O9 −0.3418 (3) 0.27759 (12) −0.01293 (5) 0.0215 (4)
C10 −0.5198 (5) 0.29825 (19) −0.05223 (8) 0.0211 (5)
O10 −0.5414 (4) 0.39082 (13) −0.07045 (5) 0.0264 (4)
C11 −0.6877 (5) 0.19585 (19) −0.06980 (8) 0.0241 (6)
C12 −0.6423 (7) 0.0922 (2) −0.04544 (10) 0.0441 (8)
H12A −0.7486 0.0265 −0.0564 0.053*
H12B −0.5056 0.0883 −0.0182 0.053*
C13 −0.8840 (6) 0.2102 (2) −0.11027 (9) 0.0314 (6)
H13A −1.0002 0.1407 −0.1164 0.047*
H13B −0.7650 0.2273 −0.1376 0.047*
H13C −1.0239 0.2727 −0.1051 0.047*

(II) 3-(2,4,5-Trimethyl-3,6-dioxocyclohexa-1,4-dienyl)propyl methacrylate. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0196 (12) 0.0212 (12) 0.0220 (13) −0.0030 (9) 0.0022 (10) 0.0003 (10)
O1 0.0395 (11) 0.0232 (9) 0.0328 (10) −0.0028 (8) −0.0109 (8) −0.0067 (8)
C2 0.0204 (12) 0.0213 (12) 0.0183 (12) −0.0005 (9) 0.0006 (10) 0.0029 (10)
C21 0.0338 (15) 0.0207 (13) 0.0281 (14) 0.0027 (10) −0.0028 (11) 0.0001 (11)
C3 0.0186 (12) 0.0247 (12) 0.0167 (12) −0.0011 (10) 0.0032 (9) 0.0030 (10)
C31 0.0297 (13) 0.0288 (14) 0.0230 (13) −0.0012 (11) −0.0026 (11) 0.0019 (11)
C4 0.0217 (12) 0.0229 (12) 0.0191 (12) −0.0039 (10) 0.0031 (10) −0.0021 (10)
O4 0.0364 (10) 0.0256 (9) 0.0286 (10) −0.0042 (8) −0.0065 (8) −0.0071 (8)
C5 0.0194 (12) 0.0181 (12) 0.0208 (12) 0.0003 (9) 0.0028 (10) 0.0015 (10)
C51 0.0327 (15) 0.0214 (13) 0.0296 (15) 0.0021 (10) 0.0000 (11) 0.0013 (11)
C6 0.0162 (11) 0.0224 (12) 0.0183 (12) 0.0000 (9) 0.0016 (9) 0.0028 (10)
C7 0.0192 (12) 0.0252 (13) 0.0229 (13) −0.0008 (10) 0.0000 (10) 0.0018 (10)
C8 0.0177 (12) 0.0229 (12) 0.0221 (13) 0.0005 (9) −0.0016 (10) −0.0006 (10)
C9 0.0205 (12) 0.0195 (12) 0.0221 (13) −0.0023 (9) −0.0027 (10) 0.0014 (10)
O9 0.0236 (9) 0.0190 (8) 0.0213 (9) −0.0013 (6) −0.0038 (7) 0.0000 (7)
C10 0.0212 (12) 0.0225 (13) 0.0194 (13) 0.0025 (10) 0.0009 (10) −0.0023 (10)
O10 0.0314 (10) 0.0227 (9) 0.0244 (9) −0.0005 (7) −0.0049 (7) 0.0044 (7)
C11 0.0277 (13) 0.0227 (13) 0.0217 (13) −0.0002 (10) 0.0006 (10) −0.0018 (10)
C12 0.065 (2) 0.0248 (14) 0.0399 (17) −0.0126 (13) −0.0195 (14) −0.0009 (13)
C13 0.0295 (14) 0.0303 (14) 0.0338 (15) 0.0014 (11) −0.0036 (11) −0.0079 (12)

(II) 3-(2,4,5-Trimethyl-3,6-dioxocyclohexa-1,4-dienyl)propyl methacrylate. Geometric parameters (Å, º)

C1—O1 1.220 (3) C6—C7 1.510 (3)
C1—C2 1.491 (3) C7—C8 1.531 (3)
C1—C6 1.494 (3) C7—H7A 0.9900
C2—C3 1.345 (3) C7—H7B 0.9900
C2—C21 1.500 (3) C8—C9 1.509 (3)
C21—H21A 0.9800 C8—H8A 0.9900
C21—H21B 0.9800 C8—H8B 0.9900
C21—H21C 0.9800 C9—O9 1.448 (3)
C3—C4 1.487 (3) C9—H9A 0.9900
C3—C31 1.505 (3) C9—H9B 0.9900
C31—H31A 0.9800 O9—C10 1.342 (3)
C31—H31B 0.9800 C10—O10 1.213 (3)
C31—H31C 0.9800 C10—C11 1.490 (3)
C4—O4 1.224 (3) C11—C13 1.401 (3)
C4—C5 1.489 (3) C11—C12 1.416 (3)
C5—C6 1.342 (3) C12—H12A 0.9500
C5—C51 1.501 (3) C12—H12B 0.9500
C51—H51A 0.9800 C13—H13A 0.9800
C51—H51B 0.9800 C13—H13B 0.9800
C51—H51C 0.9800 C13—H13C 0.9800
O1—C1—C2 119.7 (2) C1—C6—C7 116.11 (19)
O1—C1—C6 119.8 (2) C6—C7—C8 110.83 (18)
C2—C1—C6 120.5 (2) C6—C7—H7A 109.5
C3—C2—C1 119.6 (2) C8—C7—H7A 109.5
C3—C2—C21 125.7 (2) C6—C7—H7B 109.5
C1—C2—C21 114.71 (19) C8—C7—H7B 109.5
C2—C21—H21A 109.5 H7A—C7—H7B 108.1
C2—C21—H21B 109.5 C9—C8—C7 113.78 (18)
H21A—C21—H21B 109.5 C9—C8—H8A 108.8
C2—C21—H21C 109.5 C7—C8—H8A 108.8
H21A—C21—H21C 109.5 C9—C8—H8B 108.8
H21B—C21—H21C 109.5 C7—C8—H8B 108.8
C2—C3—C4 119.7 (2) H8A—C8—H8B 107.7
C2—C3—C31 125.6 (2) O9—C9—C8 108.86 (17)
C4—C3—C31 114.7 (2) O9—C9—H9A 109.9
C3—C31—H31A 109.5 C8—C9—H9A 109.9
C3—C31—H31B 109.5 O9—C9—H9B 109.9
H31A—C31—H31B 109.5 C8—C9—H9B 109.9
C3—C31—H31C 109.5 H9A—C9—H9B 108.3
H31A—C31—H31C 109.5 C10—O9—C9 114.78 (17)
H31B—C31—H31C 109.5 O10—C10—O9 122.9 (2)
O4—C4—C3 119.8 (2) O10—C10—C11 124.7 (2)
O4—C4—C5 119.5 (2) O9—C10—C11 112.39 (19)
C3—C4—C5 120.8 (2) C13—C11—C12 124.3 (2)
C6—C5—C4 119.7 (2) C13—C11—C10 116.3 (2)
C6—C5—C51 124.9 (2) C12—C11—C10 119.4 (2)
C4—C5—C51 115.5 (2) C11—C12—H12A 120.0
C5—C51—H51A 109.5 C11—C12—H12B 120.0
C5—C51—H51B 109.5 H12A—C12—H12B 120.0
H51A—C51—H51B 109.5 C11—C13—H13A 109.5
C5—C51—H51C 109.5 C11—C13—H13B 109.5
H51A—C51—H51C 109.5 H13A—C13—H13B 109.5
H51B—C51—H51C 109.5 C11—C13—H13C 109.5
C5—C6—C1 119.7 (2) H13A—C13—H13C 109.5
C5—C6—C7 124.0 (2) H13B—C13—H13C 109.5

(II) 3-(2,4,5-Trimethyl-3,6-dioxocyclohexa-1,4-dienyl)propyl methacrylate. Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
C9—H9A···O10i 0.99 2.72 3.624 (3) 153
C9—H9B···O10ii 0.99 2.70 3.595 (3) 150
C12—H12A···O1iii 0.95 2.53 3.422 (3) 156
C21—H21A···O4iv 0.98 2.52 3.455 (3) 161
C31—H31C···O4iv 0.98 2.68 3.638 (3) 166
C51—H51B···O10v 0.98 2.67 3.510 (3) 144
C31—H31B···Cgii 0.98 2.95 3.534 (3) 119

Symmetry codes: (i) −x−1, −y+1, −z; (ii) x+1, y, z; (iii) −x−1, −y, −z; (iv) −x+3/2, y−1/2, −z+1/2; (v) −x, −y+1, −z.

Funding Statement

This work was funded by NZ Ministry of Business, Innovation and Employment Science Investment Fund grant UOOX1206.

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  3. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dana, B. H., McAdam, C. J., Robinson, B. H., Simpson, J. & Wang, H. (2007). J. Inorg. Organomet. Polym. Mater. 17, 547–559.
  5. Goswami, S. K., Hanton, L. R., McAdam, C. J., Moratti, S. C. & Simpson, J. (2011). Acta Cryst. E67, o1566–o1567. [DOI] [PMC free article] [PubMed]
  6. Goswami, S. K., Hanton, L. R., McAdam, C. J., Moratti, S. C. & Simpson, J. (2015). Acta Cryst. C71, 860–866. [DOI] [PubMed]
  7. Goswami, S. K., McAdam, C. J., Lee, A. M. M., Hanton, L. R. & Moratti, S. C. (2013). J. Mater. Chem. A, 1, 3415–3420.
  8. Gracia, R. & Mecerreyes, D. (2013). Polym. Chem. 4, 2206–2214.
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Hasegawa, T., Shimizu, K., Seki, H., Murakami, H., Yoshida, S., Yoza, K. & Nomiya, K. (2007). Inorg. Chem. Commun. 10, 1140–1144.
  11. Häupler, B., Ignaszak, A., Janoschka, T., Jähnert, T., Hager, M. D. & Schubert, U. S. (2014). Macromol. Chem. Phys. 215, 1250–1256.
  12. Hodge, P. & Gautrot, J. E. (2009). Polym. Int. 58, 261–266.
  13. Hoffmann, H. M. R. & Hursthouse, M. B. (1976). J. Am. Chem. Soc. 98, 7449–7450.
  14. Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.
  15. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  16. Matsuo, Y., Iwashita, A., Oyama, H. & Nakamura, E. (2009). Tetrahedron Lett. 50, 3411–3413.
  17. McAdam, C. J., Moratti, S. C. & Simpson, J. (2015). Acta Cryst. C71, 1100–1105. [DOI] [PubMed]
  18. McAdam, C. J., Nafady, A., Bond, A. M., Moratti, S. C. & Simpson, J. (2008). J. Inorg. Organomet. Polym. Mater. 18, 485–490.
  19. Schattling, P., Jochum, F. D. & Theato, P. (2014). Polym. Chem. 5, 25–36.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  22. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  23. Tamura, K., Akutagawa, N., Satoh, M., Wada, J. & Masuda, T. (2008). Macromol. Rapid Commun. 29, 1944–1949.
  24. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  25. Wickramasinhage, R., McAdam, C. J. & Simpson, J. (2016). IUCrData, 1, x160307.
  26. Wieczorek, M. W., Bockii, N. G. & Struchkov, Y. T. (1975). Rocz. Chem. 49, 1737.
  27. Wiedenfeld, D. J., Nesterov, V. N., Minton, M. A. & Glass, D. R. (2003). Acta Cryst. C59, o700–o702. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989017004959/hg5486sup1.cif

e-73-00658-sup1.cif (860KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017004959/hg5486Isup2.hkl

e-73-00658-Isup2.hkl (135.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989017004959/hg5486IIsup3.hkl

e-73-00658-IIsup3.hkl (201KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017004959/hg5486Isup4.cml

Supporting information file. DOI: 10.1107/S2056989017004959/hg5486IIsup5.cml

CCDC references: 1541065, 1541064

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES