Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Apr 18;73(Pt 5):716–719. doi: 10.1107/S2056989017005448

Crystal structure of (S)-sec-butyl­ammonium l-tartrate monohydrate

Ernlie A Publicover a, Jennifer Kolwich a, Darcie L Stack a, Alyssa J Doué a, Kai E O Ylijoki a,*
PMCID: PMC5418791  PMID: 28529783

The title hydrated mol­ecular salt was prepared by deprotonation of enanti­opure l-tartaric acid with racemic sec-butyl­amine in water. Only one enanti­omer was observed crystallographically, resulting from the combination of (S)-sec-butyl­amine with l-tartaric acid.

Keywords: crystal structure, sec-butyl­amine, l-tartaric acid, chiral resolution, monohydrate, hydrogen bonding

Abstract

The title hydrated mol­ecular salt, C4H12N+·C4H5O6 ·H2O, was prepared by deprotonation of enanti­opure l-tartaric acid with racemic sec-butyl­amine in water. Only one enanti­omer was observed crystallographically, resulting from the combination of (S)-sec-butyl­amine with l-tartaric acid. The sec-butyl­ammonium moiety is disordered over two conformations related by rotation around the CH–CH2 bond; the refined occupancy ratio is 0.68 (1):0.32 (1). In the crystal, mol­ecules are linked through a network of O—H⋯O and N—H⋯O hydrogen-bonding inter­actions, between the ammonium H atoms, the tartrate hy­droxy H atoms, and the inter­stitial water, forming a three-dimensional supra­molecular structure.

Chemical context  

Given that the two enanti­omers of chiral compounds can display significantly different reactivity in the presence of other chiral compounds (e.g., enzymatic reactions), the separation of racemic mixtures is an important process in chemical synthesis. Since enanti­omers have identical physical properties, they cannot be separated by standard physical means such as distillation, crystallization, or chromatography. One common method to overcome this issue is to convert the racemic compound into a mixture of diastereomers through reaction with an enanti­opure component (Fogassy et al., 2006). This method has been used for the resolution of amine enanti­omers by protonation with chiral tartaric acid to produce diastereomeric salts. Examples include resolution of α-phenyl­ethyl­amine (Ault 1965; Kokila et al., 2002), N-methyl­amphetamines (Kmecz et al., 2004), 2-(benzyl­amino)-4-oxo-4-phenyl­butano­ate (Berkeš et al., 2003), 3-amino­butanol (Yatcherla et al., 2015), aminona­phthols (Periasamy et al., 2009), and serotonin and dopamine antagonists (Campiani et al., 2002).graphic file with name e-73-00716-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title hydrated mol­ecular salt is shown in Fig. 1. The salt crystallized as a single enanti­omer, consisting of an (S)-sec-butyl ammonium cation, the l-tartrate anion, and one mol­ecule of water in the asymmetric unit. The Flack parameter [–2.7 (8)] was not of use in determining the absolute configuration of the sec-butyl­amine in the crystal. The absolute configuration of the (S)-sec-butyl ammonium cation is therefore based on the known absolute configuration of the l-tartaric acid used during compound preparation. The final structure is disordered, with the sec-butyl ammonium moiety taking on two different rotamers about the C2–C3 axis [refined occupancy ratio is 0.68 (1):0.32 (1)]. The major component takes on a conformation where the C4 methyl group and N9 ammonium are in a gauche relationship (Fig. 1 a), while the minor component places the C4A methyl group anti­periplanar to the N9A ammonium (Fig. 1 b). The C—C bond lengths in the amine and tartrate units average 1.523 (11) Å [1.516 (22) Å for the minor component of the disorder] and 1.532 (5) Å, respectively. The C—N bonds of the two components of the disorder average 1.498 (17) Å. The tartrate C—OH bonds average 1.411 (4) Å, while the C—O bonds of the carboxyl moieties average 1.257 (4) Å for the one involved in hydrogen bonding with the amine, and 1.258 (4) Å for the other. An intra­molecular hydrogen bond [2.00 (3) Å] occurs with O12 acting as a hydrogen-bond donor to O11.

Figure 1.

Figure 1

The mol­ecular structure of the title hydrated mol­ecular salt, showing (a) the major and (b) the minor components of the disordered sec-butyl­ammonium moiety. Displacement ellipsoids are drawn at the 50% probability level. Red lines indicate the hydrogen bonds present within the asymmetric unit (see Table 1).

Supra­molecular features  

The supra­molecular structure of the crystal consists of a network of inter­molecular O—H⋯O and N—H⋯O hydrogen bonds (Table 1, Fig. 2). Within the asymmetric unit, the N9—H9A atom of the sec-butyl ammonium cation acts as a hydrogen-bond donor to O11 of the tartrate anion [1.89 (2) Å], and the tartrate O13 donates a hydrogen bond to O16 of water [1.83 (3) Å]. The water in turn acts as a hydrogen-bond donor to O10 [2.01 (3) Å] and O15 [1.93 (4) Å] of two adjacent symmetry-related mol­ecules. Three additional hydrogen bonds are formed from N9, with N9—H9B donating to O12 of an adjacent mol­ecule [1.97 (3) Å], and N9—H9C donating to both O13 [2.16 (4) Å] and O15 [2.20 (4) Å] of a second adjacent mol­ecule. Finally, O14 donates a hydrogen bond to O10 of an additional symmetry-related mol­ecule [1.58 (5) Å]. A view of the crystal packing reveals the amine, tartrate, and water mol­ecules form columns when viewed down the c axis (Fig. 2).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H12⋯O11 0.90 (3) 2.00 (3) 2.602 (2) 123 (3)
O13—H13⋯O16 0.85 (3) 1.83 (3) 2.662 (2) 167 (3)
O14—H14⋯O10i 0.93 (4) 1.58 (5) 2.499 (2) 171 (5)
O16—H16A⋯O15ii 0.87 (4) 1.93 (4) 2.791 (2) 169 (4)
O16—H16B⋯O10iii 0.83 (4) 2.01 (3) 2.822 (2) 167 (3)
N9—H9A⋯O11 0.93 (2) 1.89 (2) 2.803 (9) 167 (4)
N9—H9B⋯O12ii 0.91 (2) 1.97 (3) 2.869 (11) 169 (4)
N9—H9C⋯O13iv 0.92 (2) 2.16 (4) 2.922 (13) 140 (5)
N9—H9C⋯O15iv 0.92 (2) 2.20 (4) 3.001 (12) 145 (5)
N9A—H9AA⋯O11 0.91 (3) 1.87 (4) 2.76 (2) 164 (8)
N9A—H9AB⋯O13iv 0.90 (3) 1.96 (6) 2.79 (3) 151 (9)
N9A—H9AB⋯O15iv 0.90 (3) 2.21 (8) 2.83 (3) 126 (6)
N9A—H9AC⋯O12ii 0.91 (3) 1.99 (5) 2.81 (3) 150 (7)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

A view of the crystal packing of the title hydrated mol­ecular salt, viewed along the c axis (major component of the disorder only). Red dashed lines indicate the inter­molecular hydrogen-bonding network (see Table 1). Displacement ellipsoids are drawn at the 50% probability level.

Database survey  

The Cambridge Structural Database (CSD, Version 5.37; Groom et al., 2016) does not contain any other examples of simple secondary alkyl ammonium tartrate compounds. Two primary alkyl ammonium compounds have been reported: methyl­ammonium l-tartrate (XOJMOA; Callear et al., 2008a ) and n-butyl ammonium tartrate monohydrate (XOJDIL; Callear et al., 2008b ). Multiple stereoisomers of the phenyl­ethyl­ammonium tartrate salt have also been reported, viz. BUSHED (Mei et al., 2010), JADTUD (Molins et al., 1989), QAMYIN (Turkington et al., 2005), along with the related napthylethyl ammonium tartrate (QAPTEG; Gül & Nelson, 1999).

Synthesis and crystallization  

The title compound was prepared via a modification to a previously published procedure (Helmkamp & Johnson, 1983). Racemic sec-butyl­amine (23.7 g, 17.2 ml, 324.0 mmol) was added to 40 ml of water and stirred to ensure homogeneity. While stirring, l-tartaric acid (50.0 g, 333.1 mmol) was slowly added. The solution was covered and allowed to stand at ambient temperature. After 24 h, crystal formation was evident. The crystallization process was allowed to continue undisturbed for one week, at which point a crystal for diffraction analysis was selected directly from the reaction mixture without further purification or isolation. The crystals can be isolated by vacuum filtration to yield a white crystalline solid (33.5 g, 42%).

Refinement  

Crystal data, data collection, and structure refinement details are summarized in Table 2. The H atoms on the N and O atoms were located in a difference-Fourier map and freely refined. The alkyl H atoms were included at geometrically idealized positions (C—H = 0.98–1.00 Å) and treated as riding with U iso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(C) for other H atoms. The sec-butyl ammonium moiety displays a twofold disorder arising from two different rotamers being present that is best described as a 0.68 (1):0.32 (1) ratio of the two possible conformations. In the final cycles of refinement SAME restraints were applied to the two components of the disordered sec-butyl ammonium moiety and DFIX restraints were applied to the N—H bonds [N—H = 0.91 (2) Å] and the ammonium H⋯H distances [H⋯H = 1.50 (2) Å], to improve the refinement and geometry.

Table 2. Experimental details.

Crystal data
Chemical formula C4H12N+·C4H5O6 ·H2O
M r 241.24
Crystal system, space group Orthorhombic, P21212
Temperature (K) 125
a, b, c (Å) 11.0921 (10), 14.8876 (14), 7.2070 (7)
V3) 1190.13 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.21 × 0.09 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.567, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 9652, 2925, 2613
R int 0.067
(sin θ/λ)max−1) 0.680
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.104, 1.03
No. of reflections 2925
No. of parameters 236
No. of restraints 20
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.27

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), DIAMOND (Crystal Impact, 2014) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989017005448/su5364sup1.cif

e-73-00716-sup1.cif (300.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017005448/su5364Isup2.hkl

e-73-00716-Isup2.hkl (233.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017005448/su5364Isup3.cml

CCDC reference: 1543331

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Canada Foundation for Innovation (CFI), the Faculties of Science and Graduate Studies and Research of Saint Mary’s University, and the SMUworks program (SMUworks Summer 2016 Grant) is gratefully acknowledged. The authors thank Dr Katherine N. Robertson for many helpful discussions during the preparation of this manuscript.

supplementary crystallographic information

Crystal data

C4H12N+·C4H5O6·H2O Dx = 1.346 Mg m3
Mr = 241.24 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21212 Cell parameters from 5745 reflections
a = 11.0921 (10) Å θ = 2.3–28.6°
b = 14.8876 (14) Å µ = 0.12 mm1
c = 7.2070 (7) Å T = 125 K
V = 1190.13 (19) Å3 Needle, clear light colourless
Z = 4 0.21 × 0.09 × 0.04 mm
F(000) = 520

Data collection

Bruker APEXII CCD diffractometer 2613 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.067
φ and ω scans θmax = 28.9°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −14→14
Tmin = 0.567, Tmax = 0.746 k = −19→20
9652 measured reflections l = −9→9
2925 independent reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: mixed
wR(F2) = 0.104 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.1359P] where P = (Fo2 + 2Fc2)/3
2925 reflections (Δ/σ)max < 0.001
236 parameters Δρmax = 0.30 e Å3
20 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O10 0.78822 (15) 0.45123 (9) 0.6188 (2) 0.0219 (3)
O11 0.72627 (15) 0.30780 (10) 0.6134 (2) 0.0250 (4)
O12 0.72284 (14) 0.29621 (10) 0.2532 (2) 0.0225 (3)
H12 0.702 (3) 0.264 (2) 0.353 (4) 0.047 (9)*
O13 0.97215 (14) 0.34543 (11) 0.3063 (2) 0.0232 (4)
H13 1.001 (3) 0.358 (2) 0.412 (4) 0.041 (9)*
O14 0.78763 (14) 0.44450 (10) −0.0347 (2) 0.0212 (3)
H14 0.792 (4) 0.442 (3) −0.163 (6) 0.092 (15)*
O15 0.96848 (16) 0.37910 (14) −0.0496 (3) 0.0382 (5)
C5 0.75823 (18) 0.37845 (14) 0.5374 (3) 0.0177 (4)
C6 0.75836 (18) 0.38090 (14) 0.3251 (3) 0.0181 (4)
H6 0.698877 0.427117 0.283210 0.022*
C7 0.88300 (18) 0.40657 (13) 0.2505 (3) 0.0184 (4)
H7 0.904588 0.467567 0.298169 0.022*
C8 0.88361 (19) 0.40887 (13) 0.0376 (3) 0.0189 (4)
O16 1.09484 (15) 0.38045 (11) 0.6154 (2) 0.0239 (4)
H16A 1.048 (3) 0.383 (3) 0.713 (6) 0.057 (11)*
H16B 1.139 (3) 0.425 (2) 0.614 (5) 0.049 (10)*
C1 0.4453 (5) 0.3844 (4) 0.7178 (9) 0.0343 (12) 0.683 (8)
H1A 0.409648 0.328062 0.673732 0.052* 0.683 (8)
H1B 0.513909 0.400409 0.638753 0.052* 0.683 (8)
H1C 0.384759 0.432249 0.712719 0.052* 0.683 (8)
C2 0.4888 (4) 0.3725 (4) 0.9196 (8) 0.0251 (11) 0.683 (8)
H2 0.532125 0.428349 0.957990 0.030* 0.683 (8)
C3 0.3852 (3) 0.3571 (3) 1.0525 (6) 0.0325 (11) 0.683 (8)
H3A 0.323796 0.404227 1.031552 0.039* 0.683 (8)
H3B 0.347576 0.298478 1.023235 0.039* 0.683 (8)
C4 0.4201 (4) 0.3577 (3) 1.2555 (6) 0.0386 (12) 0.683 (8)
H4A 0.469675 0.304846 1.282853 0.058* 0.683 (8)
H4B 0.347090 0.356292 1.332028 0.058* 0.683 (8)
H4C 0.466033 0.412306 1.282961 0.058* 0.683 (8)
N9 0.5762 (8) 0.2958 (8) 0.9253 (15) 0.0176 (14) 0.683 (8)
H9C 0.544 (7) 0.240 (3) 0.909 (7) 0.07 (2)* 0.683 (8)
H9A 0.634 (3) 0.305 (3) 0.834 (5) 0.015 (11)* 0.683 (8)
H9B 0.615 (4) 0.300 (3) 1.037 (4) 0.030 (12)* 0.683 (8)
C1A 0.4346 (13) 0.3806 (9) 0.8007 (19) 0.040 (3) 0.317 (8)
H1AA 0.387949 0.331055 0.747348 0.060* 0.317 (8)
H1AB 0.494591 0.401206 0.710339 0.060* 0.317 (8)
H1AC 0.380246 0.430337 0.831645 0.060* 0.317 (8)
C2A 0.4980 (13) 0.3487 (9) 0.9750 (18) 0.034 (3) 0.317 (8)
H2A 0.544271 0.400926 1.025413 0.041* 0.317 (8)
C3A 0.4163 (8) 0.3153 (6) 1.1293 (12) 0.033 (2) 0.317 (8)
H3AA 0.365209 0.266424 1.079528 0.039* 0.317 (8)
H3AB 0.467213 0.289296 1.228555 0.039* 0.317 (8)
C4A 0.3352 (11) 0.3859 (7) 1.2147 (17) 0.058 (4) 0.317 (8)
H4AA 0.281880 0.410607 1.118991 0.088* 0.317 (8)
H4AB 0.384600 0.434191 1.267114 0.088* 0.317 (8)
H4AC 0.286538 0.358557 1.313144 0.088* 0.317 (8)
N9A 0.588 (2) 0.2777 (18) 0.925 (4) 0.022 (4) 0.317 (8)
H9AA 0.645 (7) 0.290 (8) 0.837 (10) 0.027* 0.317 (8)
H9AB 0.535 (8) 0.236 (6) 0.885 (12) 0.027* 0.317 (8)
H9AC 0.623 (7) 0.263 (6) 1.034 (7) 0.027* 0.317 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O10 0.0275 (8) 0.0241 (7) 0.0140 (7) 0.0008 (6) 0.0003 (6) −0.0008 (6)
O11 0.0334 (9) 0.0258 (7) 0.0157 (7) −0.0013 (7) 0.0032 (7) 0.0015 (6)
O12 0.0247 (8) 0.0274 (7) 0.0153 (7) −0.0058 (6) −0.0008 (6) −0.0013 (6)
O13 0.0196 (8) 0.0349 (9) 0.0150 (7) 0.0060 (6) −0.0035 (6) −0.0035 (6)
O14 0.0217 (8) 0.0293 (7) 0.0127 (7) 0.0025 (6) 0.0002 (6) 0.0004 (6)
O15 0.0310 (9) 0.0638 (12) 0.0197 (8) 0.0206 (9) 0.0083 (8) 0.0092 (8)
C5 0.0153 (9) 0.0247 (9) 0.0132 (9) 0.0035 (7) 0.0017 (7) −0.0002 (8)
C6 0.0175 (10) 0.0236 (9) 0.0133 (9) 0.0003 (8) −0.0001 (7) −0.0009 (7)
C7 0.0171 (10) 0.0232 (9) 0.0151 (10) 0.0000 (8) −0.0009 (8) −0.0001 (8)
C8 0.0199 (10) 0.0215 (9) 0.0153 (9) −0.0010 (8) 0.0015 (8) 0.0008 (8)
O16 0.0232 (8) 0.0309 (8) 0.0178 (8) −0.0013 (7) 0.0002 (7) −0.0037 (7)
C1 0.026 (2) 0.037 (2) 0.039 (3) 0.0030 (17) −0.009 (2) 0.004 (3)
C2 0.0195 (19) 0.023 (3) 0.033 (3) 0.0017 (17) 0.000 (2) 0.000 (2)
C3 0.0249 (18) 0.029 (2) 0.044 (2) 0.0039 (15) 0.0006 (17) −0.0014 (18)
C4 0.031 (2) 0.041 (2) 0.044 (2) −0.0027 (17) 0.0089 (18) −0.0054 (19)
N9 0.015 (3) 0.021 (4) 0.017 (2) −0.0038 (19) −0.0024 (18) −0.001 (2)
C1A 0.050 (7) 0.030 (5) 0.040 (7) 0.001 (4) −0.007 (8) 0.002 (6)
C2A 0.043 (6) 0.033 (7) 0.025 (6) 0.005 (5) 0.001 (5) 0.010 (4)
C3A 0.030 (4) 0.038 (5) 0.030 (5) 0.007 (4) 0.010 (4) 0.000 (4)
C4A 0.065 (8) 0.048 (6) 0.063 (7) 0.027 (5) 0.029 (6) 0.015 (5)
N9A 0.024 (6) 0.021 (9) 0.021 (5) 0.010 (4) 0.003 (4) −0.003 (5)

Geometric parameters (Å, º)

O10—C5 1.276 (3) C3—H3B 0.9900
O11—C5 1.238 (3) C3—C4 1.513 (6)
O12—H12 0.90 (3) C4—H4A 0.9800
O12—C6 1.419 (2) C4—H4B 0.9800
O13—H13 0.85 (3) C4—H4C 0.9800
O13—C7 1.403 (3) N9—H9C 0.92 (2)
O14—H14 0.93 (4) N9—H9A 0.93 (2)
O14—C8 1.299 (3) N9—H9B 0.91 (2)
O15—C8 1.216 (3) C1A—H1AA 0.9800
C5—C6 1.530 (3) C1A—H1AB 0.9800
C6—H6 1.0000 C1A—H1AC 0.9800
C6—C7 1.532 (3) C1A—C2A 1.517 (14)
C7—H7 1.0000 C2A—H2A 1.0000
C7—C8 1.535 (3) C2A—C3A 1.518 (12)
O16—H16A 0.87 (4) C2A—N9A 1.497 (15)
O16—H16B 0.83 (4) C3A—H3AA 0.9900
C1—H1A 0.9800 C3A—H3AB 0.9900
C1—H1B 0.9800 C3A—C4A 1.514 (12)
C1—H1C 0.9800 C4A—H4AA 0.9800
C1—C2 1.542 (7) C4A—H4AB 0.9800
C2—H2 1.0000 C4A—H4AC 0.9800
C2—C3 1.513 (6) N9A—H9AA 0.91 (3)
C2—N9 1.498 (8) N9A—H9AB 0.90 (3)
C3—H3A 0.9900 N9A—H9AC 0.91 (3)
C6—O12—H12 105 (2) C3—C4—H4B 109.5
C7—O13—H13 112 (2) C3—C4—H4C 109.5
C8—O14—H14 110 (3) H4A—C4—H4B 109.5
O10—C5—C6 116.04 (18) H4A—C4—H4C 109.5
O11—C5—O10 126.33 (19) H4B—C4—H4C 109.5
O11—C5—C6 117.59 (18) C2—N9—H9C 116 (5)
O12—C6—C5 110.11 (17) C2—N9—H9A 108 (3)
O12—C6—H6 108.5 C2—N9—H9B 106 (3)
O12—C6—C7 110.12 (16) H9C—N9—H9A 108 (3)
C5—C6—H6 108.5 H9C—N9—H9B 111 (4)
C5—C6—C7 110.96 (17) H9A—N9—H9B 107 (3)
C7—C6—H6 108.5 H1AA—C1A—H1AB 109.5
O13—C7—C6 111.94 (17) H1AA—C1A—H1AC 109.5
O13—C7—H7 108.8 H1AB—C1A—H1AC 109.5
O13—C7—C8 107.33 (16) C2A—C1A—H1AA 109.5
C6—C7—H7 108.8 C2A—C1A—H1AB 109.5
C6—C7—C8 111.13 (17) C2A—C1A—H1AC 109.5
C8—C7—H7 108.8 C1A—C2A—H2A 107.1
O14—C8—C7 114.02 (18) C1A—C2A—C3A 115.6 (11)
O15—C8—O14 125.2 (2) C3A—C2A—H2A 107.1
O15—C8—C7 120.83 (19) N9A—C2A—C1A 109.4 (13)
H16A—O16—H16B 109 (3) N9A—C2A—H2A 107.1
H1A—C1—H1B 109.5 N9A—C2A—C3A 110.0 (12)
H1A—C1—H1C 109.5 C2A—C3A—H3AA 108.5
H1B—C1—H1C 109.5 C2A—C3A—H3AB 108.5
C2—C1—H1A 109.5 H3AA—C3A—H3AB 107.5
C2—C1—H1B 109.5 C4A—C3A—C2A 115.2 (8)
C2—C1—H1C 109.5 C4A—C3A—H3AA 108.5
C1—C2—H2 108.4 C4A—C3A—H3AB 108.5
C3—C2—C1 112.1 (4) C3A—C4A—H4AA 109.5
C3—C2—H2 108.4 C3A—C4A—H4AB 109.5
N9—C2—C1 108.4 (5) C3A—C4A—H4AC 109.5
N9—C2—H2 108.4 H4AA—C4A—H4AB 109.5
N9—C2—C3 111.0 (5) H4AA—C4A—H4AC 109.5
C2—C3—H3A 108.6 H4AB—C4A—H4AC 109.5
C2—C3—H3B 108.6 C2A—N9A—H9AA 119 (8)
H3A—C3—H3B 107.6 C2A—N9A—H9AB 98 (8)
C4—C3—C2 114.7 (4) C2A—N9A—H9AC 104 (6)
C4—C3—H3A 108.6 H9AA—N9A—H9AB 111 (4)
C4—C3—H3B 108.6 H9AA—N9A—H9AC 111 (4)
C3—C4—H4A 109.5 H9AB—N9A—H9AC 112 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O12—H12···O11 0.90 (3) 2.00 (3) 2.602 (2) 123 (3)
O13—H13···O16 0.85 (3) 1.83 (3) 2.662 (2) 167 (3)
O14—H14···O10i 0.93 (4) 1.58 (5) 2.499 (2) 171 (5)
O16—H16A···O15ii 0.87 (4) 1.93 (4) 2.791 (2) 169 (4)
O16—H16B···O10iii 0.83 (4) 2.01 (3) 2.822 (2) 167 (3)
N9—H9A···O11 0.93 (2) 1.89 (2) 2.803 (9) 167 (4)
N9—H9B···O12ii 0.91 (2) 1.97 (3) 2.869 (11) 169 (4)
N9—H9C···O13iv 0.92 (2) 2.16 (4) 2.922 (13) 140 (5)
N9—H9C···O15iv 0.92 (2) 2.20 (4) 3.001 (12) 145 (5)
N9A—H9AA···O11 0.91 (3) 1.87 (4) 2.76 (2) 164 (8)
N9A—H9AB···O13iv 0.90 (3) 1.96 (6) 2.79 (3) 151 (9)
N9A—H9AB···O15iv 0.90 (3) 2.21 (8) 2.83 (3) 126 (6)
N9A—H9AC···O12ii 0.91 (3) 1.99 (5) 2.81 (3) 150 (7)

Symmetry codes: (i) x, y, z−1; (ii) x, y, z+1; (iii) −x+2, −y+1, z; (iv) x−1/2, −y+1/2, −z+1.

References

  1. Ault, A. (1965). J. Chem. Educ. 42, 269.
  2. Berkeš, D., Lopuch, J., Proksa, B. & Považanec, F. (2003). Chem. Pap. 57, 350–354.
  3. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Callear, S. K., Hursthouse, M. B. & Threllfall, T. L. (2008a). University of Southampton, Crystal Structure Report Archive, 577.
  5. Callear, S. K., Hursthouse, M. B. & Threllfall, T. L. (2008b). University of Southampton, Crystal Structure Report Archive, 582.
  6. Campiani, G., Butini, S., Gemma, S., Nacci, V., Fattorusso, C., Catalanotti, B., Giorgi, G., Cagnotto, A., Goegan, M., Mennini, T., Minetti, P., Di Cesare, M. A., Mastroianni, D., Scafetta, N., Galletti, B., Stasi, M. A., Castorina, M., Pacifici, L., Ghirardi, O., Tinti, O. & Carminati, P. (2002). J. Med. Chem. 45, 344–359. [DOI] [PubMed]
  7. Crystal Impact (2014). DIAMOND. Crystal Impact, Bonn, Germany.
  8. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  9. Fogassy, E., Nógrádi, M., Kozma, D., Egri, G., Pálovics, E. & Kiss, V. (2006). Org. Biomol. Chem. 4, 3011–3030. [DOI] [PubMed]
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Gül, N. & Nelson, J. H. (1999). J. Mol. Struct. 475, 121–130.
  12. Helmkamp, G. K. & Johnson, H. W. Jr (1983). Selected Experiments in Organic Chemistry, 3rd ed. New York: W. H. Freeman and Company.
  13. Kmecz, I., Simándi, B., Székely, E. & Fogassy, E. (2004). Tetrahedron Asymmetry, 15, 1841–1845.
  14. Kokila, L., Cai, S. & Chen, K. (2002). Chin. J. Chem. Eng. 10, 244–248.
  15. Mei, L., Jie, S. & Ying, J. (2010). Res. Chem. Intermed. 36, 227–236.
  16. Molins, E., Miravitlles, C., López-Calahorra, F., Castells, J. & Raventós, J. (1989). Acta Cryst. C45, 104–106. [DOI] [PubMed]
  17. Periasamy, M., Anwar, S. & Reddy, M. N. (2009). Indian J. Chem. Sect. B, 48, 1261–1273.
  18. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  19. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  20. Turkington, D. E., MacLean, E. J., Lough, A. J., Ferguson, G. & Glidewell, C. (2005). Acta Cryst. B61, 103–114. [DOI] [PubMed]
  21. Yatcherla, S. R., Islam, A., Nageshwar, D. & Hari Babu, B. (2015). Heteroletters, 5, 241–244.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989017005448/su5364sup1.cif

e-73-00716-sup1.cif (300.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017005448/su5364Isup2.hkl

e-73-00716-Isup2.hkl (233.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017005448/su5364Isup3.cml

CCDC reference: 1543331

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES