The title hydrated molecular salt was prepared by deprotonation of enantiopure l-tartaric acid with racemic sec-butylamine in water. Only one enantiomer was observed crystallographically, resulting from the combination of (S)-sec-butylamine with l-tartaric acid.
Keywords: crystal structure, sec-butylamine, l-tartaric acid, chiral resolution, monohydrate, hydrogen bonding
Abstract
The title hydrated molecular salt, C4H12N+·C4H5O6 −·H2O, was prepared by deprotonation of enantiopure l-tartaric acid with racemic sec-butylamine in water. Only one enantiomer was observed crystallographically, resulting from the combination of (S)-sec-butylamine with l-tartaric acid. The sec-butylammonium moiety is disordered over two conformations related by rotation around the CH–CH2 bond; the refined occupancy ratio is 0.68 (1):0.32 (1). In the crystal, molecules are linked through a network of O—H⋯O and N—H⋯O hydrogen-bonding interactions, between the ammonium H atoms, the tartrate hydroxy H atoms, and the interstitial water, forming a three-dimensional supramolecular structure.
Chemical context
Given that the two enantiomers of chiral compounds can display significantly different reactivity in the presence of other chiral compounds (e.g., enzymatic reactions), the separation of racemic mixtures is an important process in chemical synthesis. Since enantiomers have identical physical properties, they cannot be separated by standard physical means such as distillation, crystallization, or chromatography. One common method to overcome this issue is to convert the racemic compound into a mixture of diastereomers through reaction with an enantiopure component (Fogassy et al., 2006 ▸). This method has been used for the resolution of amine enantiomers by protonation with chiral tartaric acid to produce diastereomeric salts. Examples include resolution of α-phenylethylamine (Ault 1965 ▸; Kokila et al., 2002 ▸), N-methylamphetamines (Kmecz et al., 2004 ▸), 2-(benzylamino)-4-oxo-4-phenylbutanoate (Berkeš et al., 2003 ▸), 3-aminobutanol (Yatcherla et al., 2015 ▸), aminonaphthols (Periasamy et al., 2009 ▸), and serotonin and dopamine antagonists (Campiani et al., 2002 ▸).
Structural commentary
The molecular structure of the title hydrated molecular salt is shown in Fig. 1 ▸. The salt crystallized as a single enantiomer, consisting of an (S)-sec-butyl ammonium cation, the l-tartrate anion, and one molecule of water in the asymmetric unit. The Flack parameter [–2.7 (8)] was not of use in determining the absolute configuration of the sec-butylamine in the crystal. The absolute configuration of the (S)-sec-butyl ammonium cation is therefore based on the known absolute configuration of the l-tartaric acid used during compound preparation. The final structure is disordered, with the sec-butyl ammonium moiety taking on two different rotamers about the C2–C3 axis [refined occupancy ratio is 0.68 (1):0.32 (1)]. The major component takes on a conformation where the C4 methyl group and N9 ammonium are in a gauche relationship (Fig. 1 ▸ a), while the minor component places the C4A methyl group antiperiplanar to the N9A ammonium (Fig. 1 ▸ b). The C—C bond lengths in the amine and tartrate units average 1.523 (11) Å [1.516 (22) Å for the minor component of the disorder] and 1.532 (5) Å, respectively. The C—N bonds of the two components of the disorder average 1.498 (17) Å. The tartrate C—OH bonds average 1.411 (4) Å, while the C—O bonds of the carboxyl moieties average 1.257 (4) Å for the one involved in hydrogen bonding with the amine, and 1.258 (4) Å for the other. An intramolecular hydrogen bond [2.00 (3) Å] occurs with O12 acting as a hydrogen-bond donor to O11.
Figure 1.
The molecular structure of the title hydrated molecular salt, showing (a) the major and (b) the minor components of the disordered sec-butylammonium moiety. Displacement ellipsoids are drawn at the 50% probability level. Red lines indicate the hydrogen bonds present within the asymmetric unit (see Table 1 ▸).
Supramolecular features
The supramolecular structure of the crystal consists of a network of intermolecular O—H⋯O and N—H⋯O hydrogen bonds (Table 1 ▸, Fig. 2 ▸). Within the asymmetric unit, the N9—H9A atom of the sec-butyl ammonium cation acts as a hydrogen-bond donor to O11 of the tartrate anion [1.89 (2) Å], and the tartrate O13 donates a hydrogen bond to O16 of water [1.83 (3) Å]. The water in turn acts as a hydrogen-bond donor to O10 [2.01 (3) Å] and O15 [1.93 (4) Å] of two adjacent symmetry-related molecules. Three additional hydrogen bonds are formed from N9, with N9—H9B donating to O12 of an adjacent molecule [1.97 (3) Å], and N9—H9C donating to both O13 [2.16 (4) Å] and O15 [2.20 (4) Å] of a second adjacent molecule. Finally, O14 donates a hydrogen bond to O10 of an additional symmetry-related molecule [1.58 (5) Å]. A view of the crystal packing reveals the amine, tartrate, and water molecules form columns when viewed down the c axis (Fig. 2 ▸).
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O12—H12⋯O11 | 0.90 (3) | 2.00 (3) | 2.602 (2) | 123 (3) |
| O13—H13⋯O16 | 0.85 (3) | 1.83 (3) | 2.662 (2) | 167 (3) |
| O14—H14⋯O10i | 0.93 (4) | 1.58 (5) | 2.499 (2) | 171 (5) |
| O16—H16A⋯O15ii | 0.87 (4) | 1.93 (4) | 2.791 (2) | 169 (4) |
| O16—H16B⋯O10iii | 0.83 (4) | 2.01 (3) | 2.822 (2) | 167 (3) |
| N9—H9A⋯O11 | 0.93 (2) | 1.89 (2) | 2.803 (9) | 167 (4) |
| N9—H9B⋯O12ii | 0.91 (2) | 1.97 (3) | 2.869 (11) | 169 (4) |
| N9—H9C⋯O13iv | 0.92 (2) | 2.16 (4) | 2.922 (13) | 140 (5) |
| N9—H9C⋯O15iv | 0.92 (2) | 2.20 (4) | 3.001 (12) | 145 (5) |
| N9A—H9AA⋯O11 | 0.91 (3) | 1.87 (4) | 2.76 (2) | 164 (8) |
| N9A—H9AB⋯O13iv | 0.90 (3) | 1.96 (6) | 2.79 (3) | 151 (9) |
| N9A—H9AB⋯O15iv | 0.90 (3) | 2.21 (8) | 2.83 (3) | 126 (6) |
| N9A—H9AC⋯O12ii | 0.91 (3) | 1.99 (5) | 2.81 (3) | 150 (7) |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
.
Figure 2.
A view of the crystal packing of the title hydrated molecular salt, viewed along the c axis (major component of the disorder only). Red dashed lines indicate the intermolecular hydrogen-bonding network (see Table 1 ▸). Displacement ellipsoids are drawn at the 50% probability level.
Database survey
The Cambridge Structural Database (CSD, Version 5.37; Groom et al., 2016 ▸) does not contain any other examples of simple secondary alkyl ammonium tartrate compounds. Two primary alkyl ammonium compounds have been reported: methylammonium l-tartrate (XOJMOA; Callear et al., 2008a ▸) and n-butyl ammonium tartrate monohydrate (XOJDIL; Callear et al., 2008b ▸). Multiple stereoisomers of the phenylethylammonium tartrate salt have also been reported, viz. BUSHED (Mei et al., 2010 ▸), JADTUD (Molins et al., 1989 ▸), QAMYIN (Turkington et al., 2005 ▸), along with the related napthylethyl ammonium tartrate (QAPTEG; Gül & Nelson, 1999 ▸).
Synthesis and crystallization
The title compound was prepared via a modification to a previously published procedure (Helmkamp & Johnson, 1983 ▸). Racemic sec-butylamine (23.7 g, 17.2 ml, 324.0 mmol) was added to 40 ml of water and stirred to ensure homogeneity. While stirring, l-tartaric acid (50.0 g, 333.1 mmol) was slowly added. The solution was covered and allowed to stand at ambient temperature. After 24 h, crystal formation was evident. The crystallization process was allowed to continue undisturbed for one week, at which point a crystal for diffraction analysis was selected directly from the reaction mixture without further purification or isolation. The crystals can be isolated by vacuum filtration to yield a white crystalline solid (33.5 g, 42%).
Refinement
Crystal data, data collection, and structure refinement details are summarized in Table 2 ▸. The H atoms on the N and O atoms were located in a difference-Fourier map and freely refined. The alkyl H atoms were included at geometrically idealized positions (C—H = 0.98–1.00 Å) and treated as riding with U iso(H) = 1.5U eq(C-methyl) and 1.2U eq(C) for other H atoms. The sec-butyl ammonium moiety displays a twofold disorder arising from two different rotamers being present that is best described as a 0.68 (1):0.32 (1) ratio of the two possible conformations. In the final cycles of refinement SAME restraints were applied to the two components of the disordered sec-butyl ammonium moiety and DFIX restraints were applied to the N—H bonds [N—H = 0.91 (2) Å] and the ammonium H⋯H distances [H⋯H = 1.50 (2) Å], to improve the refinement and geometry.
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | C4H12N+·C4H5O6 −·H2O |
| M r | 241.24 |
| Crystal system, space group | Orthorhombic, P21212 |
| Temperature (K) | 125 |
| a, b, c (Å) | 11.0921 (10), 14.8876 (14), 7.2070 (7) |
| V (Å3) | 1190.13 (19) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.12 |
| Crystal size (mm) | 0.21 × 0.09 × 0.04 |
| Data collection | |
| Diffractometer | Bruker APEXII CCD |
| Absorption correction | Multi-scan (SADABS; Bruker, 2008 ▸) |
| T min, T max | 0.567, 0.746 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 9652, 2925, 2613 |
| R int | 0.067 |
| (sin θ/λ)max (Å−1) | 0.680 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.040, 0.104, 1.03 |
| No. of reflections | 2925 |
| No. of parameters | 236 |
| No. of restraints | 20 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.30, −0.27 |
Supplementary Material
Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989017005448/su5364sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017005448/su5364Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989017005448/su5364Isup3.cml
CCDC reference: 1543331
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
Financial support from the Canada Foundation for Innovation (CFI), the Faculties of Science and Graduate Studies and Research of Saint Mary’s University, and the SMUworks program (SMUworks Summer 2016 Grant) is gratefully acknowledged. The authors thank Dr Katherine N. Robertson for many helpful discussions during the preparation of this manuscript.
supplementary crystallographic information
Crystal data
| C4H12N+·C4H5O6−·H2O | Dx = 1.346 Mg m−3 |
| Mr = 241.24 | Mo Kα radiation, λ = 0.71073 Å |
| Orthorhombic, P21212 | Cell parameters from 5745 reflections |
| a = 11.0921 (10) Å | θ = 2.3–28.6° |
| b = 14.8876 (14) Å | µ = 0.12 mm−1 |
| c = 7.2070 (7) Å | T = 125 K |
| V = 1190.13 (19) Å3 | Needle, clear light colourless |
| Z = 4 | 0.21 × 0.09 × 0.04 mm |
| F(000) = 520 |
Data collection
| Bruker APEXII CCD diffractometer | 2613 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.067 |
| φ and ω scans | θmax = 28.9°, θmin = 2.3° |
| Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −14→14 |
| Tmin = 0.567, Tmax = 0.746 | k = −19→20 |
| 9652 measured reflections | l = −9→9 |
| 2925 independent reflections |
Refinement
| Refinement on F2 | Primary atom site location: dual |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: mixed |
| wR(F2) = 0.104 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.03 | w = 1/[σ2(Fo2) + (0.0447P)2 + 0.1359P] where P = (Fo2 + 2Fc2)/3 |
| 2925 reflections | (Δ/σ)max < 0.001 |
| 236 parameters | Δρmax = 0.30 e Å−3 |
| 20 restraints | Δρmin = −0.27 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| O10 | 0.78822 (15) | 0.45123 (9) | 0.6188 (2) | 0.0219 (3) | |
| O11 | 0.72627 (15) | 0.30780 (10) | 0.6134 (2) | 0.0250 (4) | |
| O12 | 0.72284 (14) | 0.29621 (10) | 0.2532 (2) | 0.0225 (3) | |
| H12 | 0.702 (3) | 0.264 (2) | 0.353 (4) | 0.047 (9)* | |
| O13 | 0.97215 (14) | 0.34543 (11) | 0.3063 (2) | 0.0232 (4) | |
| H13 | 1.001 (3) | 0.358 (2) | 0.412 (4) | 0.041 (9)* | |
| O14 | 0.78763 (14) | 0.44450 (10) | −0.0347 (2) | 0.0212 (3) | |
| H14 | 0.792 (4) | 0.442 (3) | −0.163 (6) | 0.092 (15)* | |
| O15 | 0.96848 (16) | 0.37910 (14) | −0.0496 (3) | 0.0382 (5) | |
| C5 | 0.75823 (18) | 0.37845 (14) | 0.5374 (3) | 0.0177 (4) | |
| C6 | 0.75836 (18) | 0.38090 (14) | 0.3251 (3) | 0.0181 (4) | |
| H6 | 0.698877 | 0.427117 | 0.283210 | 0.022* | |
| C7 | 0.88300 (18) | 0.40657 (13) | 0.2505 (3) | 0.0184 (4) | |
| H7 | 0.904588 | 0.467567 | 0.298169 | 0.022* | |
| C8 | 0.88361 (19) | 0.40887 (13) | 0.0376 (3) | 0.0189 (4) | |
| O16 | 1.09484 (15) | 0.38045 (11) | 0.6154 (2) | 0.0239 (4) | |
| H16A | 1.048 (3) | 0.383 (3) | 0.713 (6) | 0.057 (11)* | |
| H16B | 1.139 (3) | 0.425 (2) | 0.614 (5) | 0.049 (10)* | |
| C1 | 0.4453 (5) | 0.3844 (4) | 0.7178 (9) | 0.0343 (12) | 0.683 (8) |
| H1A | 0.409648 | 0.328062 | 0.673732 | 0.052* | 0.683 (8) |
| H1B | 0.513909 | 0.400409 | 0.638753 | 0.052* | 0.683 (8) |
| H1C | 0.384759 | 0.432249 | 0.712719 | 0.052* | 0.683 (8) |
| C2 | 0.4888 (4) | 0.3725 (4) | 0.9196 (8) | 0.0251 (11) | 0.683 (8) |
| H2 | 0.532125 | 0.428349 | 0.957990 | 0.030* | 0.683 (8) |
| C3 | 0.3852 (3) | 0.3571 (3) | 1.0525 (6) | 0.0325 (11) | 0.683 (8) |
| H3A | 0.323796 | 0.404227 | 1.031552 | 0.039* | 0.683 (8) |
| H3B | 0.347576 | 0.298478 | 1.023235 | 0.039* | 0.683 (8) |
| C4 | 0.4201 (4) | 0.3577 (3) | 1.2555 (6) | 0.0386 (12) | 0.683 (8) |
| H4A | 0.469675 | 0.304846 | 1.282853 | 0.058* | 0.683 (8) |
| H4B | 0.347090 | 0.356292 | 1.332028 | 0.058* | 0.683 (8) |
| H4C | 0.466033 | 0.412306 | 1.282961 | 0.058* | 0.683 (8) |
| N9 | 0.5762 (8) | 0.2958 (8) | 0.9253 (15) | 0.0176 (14) | 0.683 (8) |
| H9C | 0.544 (7) | 0.240 (3) | 0.909 (7) | 0.07 (2)* | 0.683 (8) |
| H9A | 0.634 (3) | 0.305 (3) | 0.834 (5) | 0.015 (11)* | 0.683 (8) |
| H9B | 0.615 (4) | 0.300 (3) | 1.037 (4) | 0.030 (12)* | 0.683 (8) |
| C1A | 0.4346 (13) | 0.3806 (9) | 0.8007 (19) | 0.040 (3) | 0.317 (8) |
| H1AA | 0.387949 | 0.331055 | 0.747348 | 0.060* | 0.317 (8) |
| H1AB | 0.494591 | 0.401206 | 0.710339 | 0.060* | 0.317 (8) |
| H1AC | 0.380246 | 0.430337 | 0.831645 | 0.060* | 0.317 (8) |
| C2A | 0.4980 (13) | 0.3487 (9) | 0.9750 (18) | 0.034 (3) | 0.317 (8) |
| H2A | 0.544271 | 0.400926 | 1.025413 | 0.041* | 0.317 (8) |
| C3A | 0.4163 (8) | 0.3153 (6) | 1.1293 (12) | 0.033 (2) | 0.317 (8) |
| H3AA | 0.365209 | 0.266424 | 1.079528 | 0.039* | 0.317 (8) |
| H3AB | 0.467213 | 0.289296 | 1.228555 | 0.039* | 0.317 (8) |
| C4A | 0.3352 (11) | 0.3859 (7) | 1.2147 (17) | 0.058 (4) | 0.317 (8) |
| H4AA | 0.281880 | 0.410607 | 1.118991 | 0.088* | 0.317 (8) |
| H4AB | 0.384600 | 0.434191 | 1.267114 | 0.088* | 0.317 (8) |
| H4AC | 0.286538 | 0.358557 | 1.313144 | 0.088* | 0.317 (8) |
| N9A | 0.588 (2) | 0.2777 (18) | 0.925 (4) | 0.022 (4) | 0.317 (8) |
| H9AA | 0.645 (7) | 0.290 (8) | 0.837 (10) | 0.027* | 0.317 (8) |
| H9AB | 0.535 (8) | 0.236 (6) | 0.885 (12) | 0.027* | 0.317 (8) |
| H9AC | 0.623 (7) | 0.263 (6) | 1.034 (7) | 0.027* | 0.317 (8) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O10 | 0.0275 (8) | 0.0241 (7) | 0.0140 (7) | 0.0008 (6) | 0.0003 (6) | −0.0008 (6) |
| O11 | 0.0334 (9) | 0.0258 (7) | 0.0157 (7) | −0.0013 (7) | 0.0032 (7) | 0.0015 (6) |
| O12 | 0.0247 (8) | 0.0274 (7) | 0.0153 (7) | −0.0058 (6) | −0.0008 (6) | −0.0013 (6) |
| O13 | 0.0196 (8) | 0.0349 (9) | 0.0150 (7) | 0.0060 (6) | −0.0035 (6) | −0.0035 (6) |
| O14 | 0.0217 (8) | 0.0293 (7) | 0.0127 (7) | 0.0025 (6) | 0.0002 (6) | 0.0004 (6) |
| O15 | 0.0310 (9) | 0.0638 (12) | 0.0197 (8) | 0.0206 (9) | 0.0083 (8) | 0.0092 (8) |
| C5 | 0.0153 (9) | 0.0247 (9) | 0.0132 (9) | 0.0035 (7) | 0.0017 (7) | −0.0002 (8) |
| C6 | 0.0175 (10) | 0.0236 (9) | 0.0133 (9) | 0.0003 (8) | −0.0001 (7) | −0.0009 (7) |
| C7 | 0.0171 (10) | 0.0232 (9) | 0.0151 (10) | 0.0000 (8) | −0.0009 (8) | −0.0001 (8) |
| C8 | 0.0199 (10) | 0.0215 (9) | 0.0153 (9) | −0.0010 (8) | 0.0015 (8) | 0.0008 (8) |
| O16 | 0.0232 (8) | 0.0309 (8) | 0.0178 (8) | −0.0013 (7) | 0.0002 (7) | −0.0037 (7) |
| C1 | 0.026 (2) | 0.037 (2) | 0.039 (3) | 0.0030 (17) | −0.009 (2) | 0.004 (3) |
| C2 | 0.0195 (19) | 0.023 (3) | 0.033 (3) | 0.0017 (17) | 0.000 (2) | 0.000 (2) |
| C3 | 0.0249 (18) | 0.029 (2) | 0.044 (2) | 0.0039 (15) | 0.0006 (17) | −0.0014 (18) |
| C4 | 0.031 (2) | 0.041 (2) | 0.044 (2) | −0.0027 (17) | 0.0089 (18) | −0.0054 (19) |
| N9 | 0.015 (3) | 0.021 (4) | 0.017 (2) | −0.0038 (19) | −0.0024 (18) | −0.001 (2) |
| C1A | 0.050 (7) | 0.030 (5) | 0.040 (7) | 0.001 (4) | −0.007 (8) | 0.002 (6) |
| C2A | 0.043 (6) | 0.033 (7) | 0.025 (6) | 0.005 (5) | 0.001 (5) | 0.010 (4) |
| C3A | 0.030 (4) | 0.038 (5) | 0.030 (5) | 0.007 (4) | 0.010 (4) | 0.000 (4) |
| C4A | 0.065 (8) | 0.048 (6) | 0.063 (7) | 0.027 (5) | 0.029 (6) | 0.015 (5) |
| N9A | 0.024 (6) | 0.021 (9) | 0.021 (5) | 0.010 (4) | 0.003 (4) | −0.003 (5) |
Geometric parameters (Å, º)
| O10—C5 | 1.276 (3) | C3—H3B | 0.9900 |
| O11—C5 | 1.238 (3) | C3—C4 | 1.513 (6) |
| O12—H12 | 0.90 (3) | C4—H4A | 0.9800 |
| O12—C6 | 1.419 (2) | C4—H4B | 0.9800 |
| O13—H13 | 0.85 (3) | C4—H4C | 0.9800 |
| O13—C7 | 1.403 (3) | N9—H9C | 0.92 (2) |
| O14—H14 | 0.93 (4) | N9—H9A | 0.93 (2) |
| O14—C8 | 1.299 (3) | N9—H9B | 0.91 (2) |
| O15—C8 | 1.216 (3) | C1A—H1AA | 0.9800 |
| C5—C6 | 1.530 (3) | C1A—H1AB | 0.9800 |
| C6—H6 | 1.0000 | C1A—H1AC | 0.9800 |
| C6—C7 | 1.532 (3) | C1A—C2A | 1.517 (14) |
| C7—H7 | 1.0000 | C2A—H2A | 1.0000 |
| C7—C8 | 1.535 (3) | C2A—C3A | 1.518 (12) |
| O16—H16A | 0.87 (4) | C2A—N9A | 1.497 (15) |
| O16—H16B | 0.83 (4) | C3A—H3AA | 0.9900 |
| C1—H1A | 0.9800 | C3A—H3AB | 0.9900 |
| C1—H1B | 0.9800 | C3A—C4A | 1.514 (12) |
| C1—H1C | 0.9800 | C4A—H4AA | 0.9800 |
| C1—C2 | 1.542 (7) | C4A—H4AB | 0.9800 |
| C2—H2 | 1.0000 | C4A—H4AC | 0.9800 |
| C2—C3 | 1.513 (6) | N9A—H9AA | 0.91 (3) |
| C2—N9 | 1.498 (8) | N9A—H9AB | 0.90 (3) |
| C3—H3A | 0.9900 | N9A—H9AC | 0.91 (3) |
| C6—O12—H12 | 105 (2) | C3—C4—H4B | 109.5 |
| C7—O13—H13 | 112 (2) | C3—C4—H4C | 109.5 |
| C8—O14—H14 | 110 (3) | H4A—C4—H4B | 109.5 |
| O10—C5—C6 | 116.04 (18) | H4A—C4—H4C | 109.5 |
| O11—C5—O10 | 126.33 (19) | H4B—C4—H4C | 109.5 |
| O11—C5—C6 | 117.59 (18) | C2—N9—H9C | 116 (5) |
| O12—C6—C5 | 110.11 (17) | C2—N9—H9A | 108 (3) |
| O12—C6—H6 | 108.5 | C2—N9—H9B | 106 (3) |
| O12—C6—C7 | 110.12 (16) | H9C—N9—H9A | 108 (3) |
| C5—C6—H6 | 108.5 | H9C—N9—H9B | 111 (4) |
| C5—C6—C7 | 110.96 (17) | H9A—N9—H9B | 107 (3) |
| C7—C6—H6 | 108.5 | H1AA—C1A—H1AB | 109.5 |
| O13—C7—C6 | 111.94 (17) | H1AA—C1A—H1AC | 109.5 |
| O13—C7—H7 | 108.8 | H1AB—C1A—H1AC | 109.5 |
| O13—C7—C8 | 107.33 (16) | C2A—C1A—H1AA | 109.5 |
| C6—C7—H7 | 108.8 | C2A—C1A—H1AB | 109.5 |
| C6—C7—C8 | 111.13 (17) | C2A—C1A—H1AC | 109.5 |
| C8—C7—H7 | 108.8 | C1A—C2A—H2A | 107.1 |
| O14—C8—C7 | 114.02 (18) | C1A—C2A—C3A | 115.6 (11) |
| O15—C8—O14 | 125.2 (2) | C3A—C2A—H2A | 107.1 |
| O15—C8—C7 | 120.83 (19) | N9A—C2A—C1A | 109.4 (13) |
| H16A—O16—H16B | 109 (3) | N9A—C2A—H2A | 107.1 |
| H1A—C1—H1B | 109.5 | N9A—C2A—C3A | 110.0 (12) |
| H1A—C1—H1C | 109.5 | C2A—C3A—H3AA | 108.5 |
| H1B—C1—H1C | 109.5 | C2A—C3A—H3AB | 108.5 |
| C2—C1—H1A | 109.5 | H3AA—C3A—H3AB | 107.5 |
| C2—C1—H1B | 109.5 | C4A—C3A—C2A | 115.2 (8) |
| C2—C1—H1C | 109.5 | C4A—C3A—H3AA | 108.5 |
| C1—C2—H2 | 108.4 | C4A—C3A—H3AB | 108.5 |
| C3—C2—C1 | 112.1 (4) | C3A—C4A—H4AA | 109.5 |
| C3—C2—H2 | 108.4 | C3A—C4A—H4AB | 109.5 |
| N9—C2—C1 | 108.4 (5) | C3A—C4A—H4AC | 109.5 |
| N9—C2—H2 | 108.4 | H4AA—C4A—H4AB | 109.5 |
| N9—C2—C3 | 111.0 (5) | H4AA—C4A—H4AC | 109.5 |
| C2—C3—H3A | 108.6 | H4AB—C4A—H4AC | 109.5 |
| C2—C3—H3B | 108.6 | C2A—N9A—H9AA | 119 (8) |
| H3A—C3—H3B | 107.6 | C2A—N9A—H9AB | 98 (8) |
| C4—C3—C2 | 114.7 (4) | C2A—N9A—H9AC | 104 (6) |
| C4—C3—H3A | 108.6 | H9AA—N9A—H9AB | 111 (4) |
| C4—C3—H3B | 108.6 | H9AA—N9A—H9AC | 111 (4) |
| C3—C4—H4A | 109.5 | H9AB—N9A—H9AC | 112 (4) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O12—H12···O11 | 0.90 (3) | 2.00 (3) | 2.602 (2) | 123 (3) |
| O13—H13···O16 | 0.85 (3) | 1.83 (3) | 2.662 (2) | 167 (3) |
| O14—H14···O10i | 0.93 (4) | 1.58 (5) | 2.499 (2) | 171 (5) |
| O16—H16A···O15ii | 0.87 (4) | 1.93 (4) | 2.791 (2) | 169 (4) |
| O16—H16B···O10iii | 0.83 (4) | 2.01 (3) | 2.822 (2) | 167 (3) |
| N9—H9A···O11 | 0.93 (2) | 1.89 (2) | 2.803 (9) | 167 (4) |
| N9—H9B···O12ii | 0.91 (2) | 1.97 (3) | 2.869 (11) | 169 (4) |
| N9—H9C···O13iv | 0.92 (2) | 2.16 (4) | 2.922 (13) | 140 (5) |
| N9—H9C···O15iv | 0.92 (2) | 2.20 (4) | 3.001 (12) | 145 (5) |
| N9A—H9AA···O11 | 0.91 (3) | 1.87 (4) | 2.76 (2) | 164 (8) |
| N9A—H9AB···O13iv | 0.90 (3) | 1.96 (6) | 2.79 (3) | 151 (9) |
| N9A—H9AB···O15iv | 0.90 (3) | 2.21 (8) | 2.83 (3) | 126 (6) |
| N9A—H9AC···O12ii | 0.91 (3) | 1.99 (5) | 2.81 (3) | 150 (7) |
Symmetry codes: (i) x, y, z−1; (ii) x, y, z+1; (iii) −x+2, −y+1, z; (iv) x−1/2, −y+1/2, −z+1.
References
- Ault, A. (1965). J. Chem. Educ. 42, 269.
- Berkeš, D., Lopuch, J., Proksa, B. & Považanec, F. (2003). Chem. Pap. 57, 350–354.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Callear, S. K., Hursthouse, M. B. & Threllfall, T. L. (2008a). University of Southampton, Crystal Structure Report Archive, 577.
- Callear, S. K., Hursthouse, M. B. & Threllfall, T. L. (2008b). University of Southampton, Crystal Structure Report Archive, 582.
- Campiani, G., Butini, S., Gemma, S., Nacci, V., Fattorusso, C., Catalanotti, B., Giorgi, G., Cagnotto, A., Goegan, M., Mennini, T., Minetti, P., Di Cesare, M. A., Mastroianni, D., Scafetta, N., Galletti, B., Stasi, M. A., Castorina, M., Pacifici, L., Ghirardi, O., Tinti, O. & Carminati, P. (2002). J. Med. Chem. 45, 344–359. [DOI] [PubMed]
- Crystal Impact (2014). DIAMOND. Crystal Impact, Bonn, Germany.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Fogassy, E., Nógrádi, M., Kozma, D., Egri, G., Pálovics, E. & Kiss, V. (2006). Org. Biomol. Chem. 4, 3011–3030. [DOI] [PubMed]
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Gül, N. & Nelson, J. H. (1999). J. Mol. Struct. 475, 121–130.
- Helmkamp, G. K. & Johnson, H. W. Jr (1983). Selected Experiments in Organic Chemistry, 3rd ed. New York: W. H. Freeman and Company.
- Kmecz, I., Simándi, B., Székely, E. & Fogassy, E. (2004). Tetrahedron Asymmetry, 15, 1841–1845.
- Kokila, L., Cai, S. & Chen, K. (2002). Chin. J. Chem. Eng. 10, 244–248.
- Mei, L., Jie, S. & Ying, J. (2010). Res. Chem. Intermed. 36, 227–236.
- Molins, E., Miravitlles, C., López-Calahorra, F., Castells, J. & Raventós, J. (1989). Acta Cryst. C45, 104–106. [DOI] [PubMed]
- Periasamy, M., Anwar, S. & Reddy, M. N. (2009). Indian J. Chem. Sect. B, 48, 1261–1273.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Turkington, D. E., MacLean, E. J., Lough, A. J., Ferguson, G. & Glidewell, C. (2005). Acta Cryst. B61, 103–114. [DOI] [PubMed]
- Yatcherla, S. R., Islam, A., Nageshwar, D. & Hari Babu, B. (2015). Heteroletters, 5, 241–244.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989017005448/su5364sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017005448/su5364Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989017005448/su5364Isup3.cml
CCDC reference: 1543331
Additional supporting information: crystallographic information; 3D view; checkCIF report


