Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Apr 18;73(Pt 5):720–725. doi: 10.1107/S2056989017005382

μ3-Chlorido-μ2-chlorido-(μ3-pyrrolidine-1-carbo­dithio­ato-κ4 S:S,S′:S′)tris­[(tri­ethyl­phosphane-κP)copper(I)]: crystal structure and Hirshfeld surface analysis

Yi Jiun Tan a, Chien Ing Yeo a, Nathan R Halcovitch b, Mukesh M Jotani c,, Edward R T Tiekink a,*
PMCID: PMC5418792  PMID: 28529784

The di­thio­carbamate ligand chelates one CuI atom and each S atom bridges a second CuI atom and thus, is tetra­coordinate. The core of the mol­ecule comprises Cu3Cl2S2 and defines seven corners of a distorted cube.

Keywords: crystal structure, copper(I), di­thio­carbamate, Hirshfeld surface analysis

Abstract

The title trinuclear compound, [Cu3(C5H8NS2)Cl2(C6H15P)3], has the di­thio­carbamate ligand symmetrically chelating one CuI atom and each of the S atoms bridging to another CuI atom. Both chloride ligands are bridging, one being μ3- and the other μ2-bridging. Each Et3P ligand occupies a terminal position. Two of the CuI atoms exist within Cl2PS donor sets and the third is based on a ClPS2 donor set, with each coordination geometry based on a distorted tetra­hedron. The constituents defining the core of the mol­ecule, i.e. Cu3Cl2S2, occupy seven corners of a distorted cube. In the crystal, linear supra­molecular chains along the c axis are formed via phosphane–methyl­ene-C—H⋯Cl and pyrrolidine–methyl­ene-C—H⋯π(chelate) inter­actions, and these chains pack without directional inter­actions between them. An analysis of the Hirshfeld surface points to the predominance of H atoms at the surface, i.e. contributing 86.6% to the surface, and also highlights the presence of C—H⋯π(chelate) inter­actions.

Chemical context  

Recent studies have highlighted the potential of ternary coinage metal phosphane/di­thio­carbamates as anti-microbial agents. Motivated by the quite significant activity exhibited by R 3PAu(S2CNRR′), R, R′ = alk­yl/aryl (Sim et al., 2014; Chen et al., 2016), lower congeners, i.e. (Ph3P)2 M(S2CNRR′), M = CuI and AgI, were investigated and shown to be also potent in this context (Jamaludin et al., 2016). A prominent lead compound, Et3PAu(S2CNEt2), was shown to possess broad-range activity against Gram-positive and Gram-negative bacteria and, notably, was also bactericidal against methicillin-resistant Staphylococcus aureus (MRSA) (Chen et al., 2016). Given that Et3PAu(S2CNEt2) exhibited the most exciting potential amongst the phosphanegold di­thio­carbamates, it was thought of inter­est to extend the chemistry/biological investigations of (R 3P)2 M(S2CNRR’), M = CuI and AgI, to include trialkyl­phosphane species. It was during these studies that the title compound, (I), was isolated as an incomplete reaction product from the 1:2:1 reaction between CuCl, Et3P and NH4[S2CN(CH2)4]. Herein, the crystal and mol­ecular structures of (I) are described along with a detailed analysis of the Hirshfeld surface.graphic file with name e-73-00720-scheme1.jpg

Structural commentary  

The mol­ecular structure of (I), Fig. 1, represents a neutral, trinuclear CuI complex comprising three monodentate phosphane ligands, two chlorido anions, one μ3- and the other μ2-bridg­ing, and a di­thio­carbamate ligand. The latter is tetra-coordinat­ing, chelating the Cu3 atom, and each sulfur atom also bridges another CuI atom. As highlighted in Fig. 2, the Cu3Cl2S2 atoms of the core occupy the corners of a distorted cube with the putative eighth position being occupied by the quaternary-carbon atom of the di­thio­carbamate ligand. As listed in Table 1, there are systematic trends in the Cu—donor-atom bond lengths. To a first approximation, the Cu—P bond lengths are about the same. As anti­cipated for the Cu1 and Cu2 atoms, the Cu—Cl bond lengths involving the μ3-chlorido ligand are systematically longer than those formed with the μ2-chlorido ligand. Despite being chelated by the di­thio­carbamate ligand, the Cu3 atom forms longer Cu—S bond lengths than do the Cu1 and Cu2 atoms, an observation correlated with the presence of two electronegative chloride anions in the donor sets for the latter.

Figure 1.

Figure 1

The mol­ecular structure of (I), showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Figure 2.

Figure 2

The mol­ecular core in (I) highlighting the ‘incomplete cube’.

Table 1. Selected geometric parameters (Å, °).

Cu1—Cl1 2.3474 (5) Cu2—P2 2.2018 (6)
Cu1—Cl2 2.5809 (5) Cu3—Cl2 2.3912 (5)
Cu1—S1 2.3282 (5) Cu3—S1 2.4002 (5)
Cu1—P1 2.1936 (5) Cu3—S2 2.4939 (5)
Cu2—Cl1 2.3640 (5) Cu3—P3 2.1841 (5)
Cu2—Cl2 2.5324 (5) S1—C1 1.7367 (19)
Cu2—S2 2.3556 (5) S2—C1 1.7330 (19)
       
Cl1—Cu1—Cl2 96.188 (18) Cl2—Cu2—S2 97.904 (18)
Cl1—Cu1—S1 104.585 (19) Cl2—Cu2—P2 112.82 (2)
Cl1—Cu1—P1 115.51 (2) S2—Cu2—P2 124.87 (2)
Cl2—Cu1—S1 100.954 (18) Cl2—Cu3—S1 104.566 (18)
Cl2—Cu1—P1 108.90 (2) Cl2—Cu3—S2 98.030 (18)
S1—Cu1—P1 125.81 (2) Cl2—Cu3—P3 118.56 (2)
Cl1—Cu2—Cl2 97.080 (18) S1—Cu3—S2 74.935 (17)
Cl1—Cu2—S2 106.406 (19) S1—Cu3—P3 127.39 (2)
Cl1—Cu2—P2 113.35 (2) S2—Cu3—P3 123.04 (2)

The coordination geometries for the Cu1 and Cu2 atoms are based on Cl2PS donor sets while that of Cu3 is based on a ClPS2 donor set, Table 1. While being based on tetra­hedra, the coordination geometries exhibit wide ranges of angles subtended at the copper atoms, i.e. 30, 28 and 53°, respectively. The wider range of angles about the Cu3 atom can be traced, in part, to the acute angle subtended by the di­thio­carbamate ligand. A measure of the geometry defined by a four-atom donor set is τ4 (Yang et al., 2007). Based on this index, τ4 values of 1 and 0 are computed for ideal tetra­hedral and square-planar geometries, respectively. The τ4 values calculated for the Cu1–Cu3 atoms in (I) are 0.84, 0.86 and 0.78, respectively, i.e. consistent with distortions from tetra­hedral geometries.

Reflecting the near equivalence in the pairs of Cu—S1 and Cu—S2 bonds, the associated C—S bond lengths are equal within experimental error, Table 1. Finally, the pyrrolidine ring is twisted about the C3—C4 bond.

Supra­molecular features  

The key feature of the mol­ecular packing in (I) is the formation of linear supra­molecular chains along the c axis, Fig. 3 a and Table 2. The μ2-chlorido ligand accepts two phosphane-methyl­ene-C—H⋯Cl type inter­actions to form a linear chain. Centrosymmetrically related chains are connected via pyrrolidine–methyl­ene-C—H⋯π(chelate) inter­actions where the chelate ring is defined by the Cu1,S1,S2,C1 atoms. Such C—H⋯π(chelate) inter­actions are now well established in di­thio­carbamate structural chemistry (Tiekink & Zukerman-Schpector, 2011) and are gaining greater recognition in coordination chemistry (Tiekink, 2017). The supra­molecular chains pack in the crystal with no directional inter­actions between them, Fig. 3 b.

Figure 3.

Figure 3

The mol­ecular packing in (I): (a) linear supra­molecular chain mediated by methyl­ene-C—H⋯Cl (orange dashed lines) and methyl­ene-C—H⋯π(chelate) (blue) inter­actions aligned along the c axis and (b) view of the unit-cell contents in projection down the c axis. One chain is highlighted in space-filling mode.

Table 2. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the (Cu,S1,S2,C1) chelate ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20B⋯Cl1i 0.99 2.81 3.722 (2) 154
C22—H22B⋯Cl1i 0.99 2.80 3.720 (2) 154
C3—H3BCg1ii 0.99 2.83 3.705 (2) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Hirshfeld surface analysis  

The Hirshfeld surface analysis of (I) was performed in accord with a recent study of a related di­thio­carbamate complex (Jotani et al., 2016). The presence of tiny red spots near the Cl1 and methyl­ene-H20B and H22B atoms on the Hirshfeld surfaces mapped over d norm in Fig. 4 is indicative of the double-acceptor (C—H)2⋯Cl inter­action. In the view of the Hirshfeld surface mapped over the calculated electrostatic potential in Fig. 5, the light-blue and pale-red regions around the electropositive and electronegative atoms result from the polarization of charges about the donors and acceptors, respectively, of the inter­molecular inter­actions. The immediate environments about a reference mol­ecule within the shape-index-mapped Hirshfeld surfaces in Fig. 6 a and b highlight the inter­molecular C—H⋯Cl and C—H⋯π(chelate) inter­actions, respectively.

Figure 4.

Figure 4

Two views of the Hirshfeld surface for (I) mapped over d norm over the range −0.016 to 1.529 au.

Figure 5.

Figure 5

A view of the Hirshfeld surface for (I) mapped over the calculated electrostatic potential in the range −0.071 to 0.030 au. The red and blue regions represent negative and positive electrostatic potentials, respectively.

Figure 6.

Figure 6

Views of Hirshfeld surface for a reference mol­ecule in (I) mapped over the shape-index property highlighting the: (a) C—H⋯Cl inter­actions as red dashed lines and (b) C—H⋯π(chelate) inter­actions as white dashed lines

The two-dimensional fingerprint plots for (I), i.e. the overall, Fig. 7 a, and those delineated into H⋯H, Cl⋯H/H⋯Cl and S⋯H/H⋯S contacts (McKinnon et al., 2007) in Fig. 7 bd, respectively, provide further information on the inter­molecular inter­actions present in the crystal. It is evident from the fingerprint plot delineated into H⋯H contacts, Fig. 7 b, that the hydrogen atoms of the tri­ethyl­phosphane and pyrrolidine ligands make the greatest contribution, i.e. 86.6%, to the Hirshfeld surface, but at distances greater than the sum of the van der Waals radii. The pair of tips at d e + d i ∼ 2.8 Å in the arrow-like distribution of points in the plot for Cl⋯H/H⋯Cl contacts, Fig. 7 c, represent the inter­molecular C—H⋯Cl inter­actions. A pair of short spikes at d e + d i ∼ 3.0 Å in the S⋯H/H⋯S delineated plot, Fig. 7 d, and the 5.8% contribution to Hirshfeld surfaces along with the small but significant contributions from C⋯H/H⋯C and Cu⋯H/H⋯Cu contacts, Table 3, to the Hirshfeld surface are all indicative of the C—H⋯π(chelate) inter­action, Fig. 3 a and Table 2. The small contributions from the other inter­atomic contacts, namely N⋯H/H⋯N and C⋯N/N⋯C, have little effect on the packing of the crystal.

Figure 7.

Figure 7

(a) The full two-dimensional fingerprint plot for (I) and fingerprint plots delineated into (b) H⋯H, (c) Cl⋯H/H⋯Cl and (d) S⋯H/H⋯S contacts.

Table 3. Percentage contribution of inter­atomic contacts to the Hirshfeld surface for (I).

Contact percentage contribution
H⋯H 86.6
Cl⋯H/H⋯Cl 5.8
S⋯H/H⋯S 5.7
C⋯H/H⋯C 1.1
Cu⋯H/H⋯Cu 0.4
N⋯H/H⋯N 0.3
C⋯N / N⋯C 0.1

Database survey  

The isolated Cu33-Cl)(μ2-Cl)S2 core observed in (I) appears to be rare in the literature, being structurally observed only in one other structure with general formula, M 33-X)(μ2-X)S2, incidentally, a di­thio­carbamate complex. Thus, in the RuII species, Ru3(CO)3(S2CNEt2)4Cl2, a discrete Ru33-Cl)(μ2-Cl)S2 core is found but where the μ2-S sulfur atoms are derived from four di­thio­carbamate ligands and each RuII atom is coordinated by two additional sulfur donor atoms leading to trans-RuCClS4 octa­hedral coordination geometries (Raston & White, 1975). While other structures are known with the specified core, the core is embedded within higher nuclearity clusters or in coordination polymers.

There are twenty crystal structure containing copper with di­thio­carbamate and phosphane ligands in the crystallographic literature (Groom et al., 2016). The majority, i.e. 12 conform to the tetra­hedral CuP2S2 motif observed in the biologically active bis­(phosphane)copper(I) di­thio­carbamate compounds mentioned in the Chemical Context (Jamaludin et al. 2016; Tan et al., 2016). Similar coordination geometries are found in two binuclear structures with bis­(di­thio­carbamate) ligands, as exemplified in (Ph3P)2CuS2CN(CH2CH2)2NCS2Cu(PPh3)2 (Kumar et al., 2009). There are two related complexes but with a 1:1:1 ratio of copper, di­thio­carbamate and phosphane, as exemplified by [Et3PCu(S2CNEt2)]2 (Afzaal et al., 2011). One of the remaining structures is neutral and octa­nuclear with formula (Ph3P)4Cu84-SC6H4Br-4)42-SC6H4Br-4)2(S2CNMe2)2·MeO(CH2)2OMe (Langer et al., 2009). Here, each sulfur atom of the di­thio­carbamate ligand bridges two different CuI atoms. The common feature of the remaining three structures is that they are charged and feature bidentate phosphane ligands. The simplest of these is formulated as [(dppm)2Cu2(S2CNMe2)][ClO4]2·EtOH·0.25H2O where the di­thio­carbamate ligand is bidentate bridging as is the dppm ligand (Huang & Situ, 2003); dppm = Ph2PCH2PPh2. In the trinuclear mono-cation {(dppm)3Cu33-I)[S2CN(CH2Ph)CH2(2-thien­yl)]}I, the di­thio­carbamate ligand bridges two CuI atoms and simultaneously coordinates a third CuI atom via one of the sulfur atoms only (Rajput et al., 2015). The final structure to be described is related to the former whereby one bis­(phosphane) ligand has been replaced by a di­thio­carbamate ligand with the ejection of the μ3-iodido species, i.e. {(dppf)2Cu3[S2CN(CH2Ph)CH2Fc]2}PF6·CHCl3 (Kishore et al., 2016); dppf = Ph2P(η5-C5H4)Fe(η5-C5H4)PPh2 and Fc is (η5-C5H4)Fe(η5-C5H5). In this structure, each di­thio­carbamate ligand is tri-coordinate, binding to three different CuI atoms. From the foregoing, it is obvious there is considerable structural variability in these systems arising in part from the ability of the di­thio­carbamate ligands to adopt quite diverse coordination modes.

Synthesis and crystallization  

Complex (I) is an unexpected product from the in situ reaction of CuCl, Et3P, and NH4[S2CN(CH2)4] in a 1:2:1 ratio. The preparation was as follows: NH4[S2CN(CH2)4] (Sigma–Aldrich, 0.5 mmol, 0.082 g) dissolved in iso­propanol (5 ml) was added to an iso­propanol solution (5 ml) of CuCl (Sigma–Aldrich, 0.5 mmol, 0.05 g) at room temperature. Then, a THF solution of Et3P (Sigma–Aldrich; 1 ml (= 0.118 g), 1.0 mmol) was added to the reaction mixture followed by stirring for 2 h. The resulting mixture was filtered, diluted with hexane (2 ml) and mixed well. The mixture was left for evaporation at 227 K. A small number of yellow crystals of (I) were obtained after 5 d. Yield: 0.0095 g (4.26%), m.p. 330.8 K. IR (cm−1): 1429(s) v(C—N); 1045(m), 993(m) v(C—S).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. Carbon-bound H atoms were placed in calculated positions (C—H = 0.98–0.99 Å) and were included in the refinement in the riding model approximation, with U iso(H) set to 1.2–1.5U eq(C).

Table 4. Experimental details.

Crystal data
Chemical formula [Cu3(C5H8NS2)Cl2(C6H15P)3]
M r 762.21
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 10.6489 (2), 31.7578 (4), 10.7212 (2)
β (°) 108.607 (2)
V3) 3436.24 (11)
Z 4
Radiation type Cu Kα
μ (mm−1) 6.14
Crystal size (mm) 0.20 × 0.09 × 0.07
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, AtlasS2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
T min, T max 0.684, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 34566, 7186, 6699
R int 0.027
(sin θ/λ)max−1) 0.631
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.028, 0.073, 1.04
No. of reflections 7186
No. of parameters 316
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.50, −0.79

Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015), SHELXS (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017005382/hb7670sup1.cif

e-73-00720-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017005382/hb7670Isup2.hkl

e-73-00720-Isup2.hkl (571KB, hkl)

CCDC reference: 1543298

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Cu3(C5H8NS2)Cl2(C6H15P)3] F(000) = 1584
Mr = 762.21 Dx = 1.473 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
a = 10.6489 (2) Å Cell parameters from 16968 reflections
b = 31.7578 (4) Å θ = 2.8–76.3°
c = 10.7212 (2) Å µ = 6.14 mm1
β = 108.607 (2)° T = 100 K
V = 3436.24 (11) Å3 Prism, yellow
Z = 4 0.20 × 0.09 × 0.07 mm

Data collection

Agilent SuperNova, Dual, Cu at zero, AtlasS2 diffractometer 7186 independent reflections
Radiation source: micro-focus sealed X-ray tube 6699 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.027
Detector resolution: 10.4607 pixels mm-1 θmax = 76.6°, θmin = 2.8°
ω scans h = −13→12
Absorption correction: multi-scan (CrysAlisPro; Rigaku Oxford Diffraction, 2015) k = −39→29
Tmin = 0.684, Tmax = 1.000 l = −13→13
34566 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028 H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0334P)2 + 3.4591P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.002
7186 reflections Δρmax = 1.50 e Å3
316 parameters Δρmin = −0.79 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.15403 (3) 0.60427 (2) 0.46213 (3) 0.02150 (8)
Cu2 0.41213 (3) 0.65484 (2) 0.54323 (3) 0.02075 (8)
Cu3 0.29958 (3) 0.60979 (2) 0.26251 (3) 0.02196 (8)
Cl1 0.29973 (4) 0.62046 (2) 0.67210 (4) 0.01860 (9)
Cl2 0.21102 (4) 0.66892 (2) 0.34453 (4) 0.01933 (9)
S1 0.26010 (4) 0.55091 (2) 0.38531 (4) 0.01620 (9)
S2 0.50822 (4) 0.60146 (2) 0.45081 (4) 0.01641 (9)
P1 −0.05739 (5) 0.60624 (2) 0.44227 (5) 0.01844 (10)
P2 0.51349 (5) 0.71293 (2) 0.63413 (5) 0.02172 (11)
P3 0.29464 (5) 0.61039 (2) 0.05729 (5) 0.01832 (10)
N1 0.46529 (16) 0.53980 (5) 0.60120 (15) 0.0162 (3)
C1 0.41813 (18) 0.56133 (6) 0.49156 (18) 0.0152 (3)
C2 0.38664 (19) 0.50826 (6) 0.64599 (19) 0.0190 (4)
H2A 0.3621 0.4843 0.5840 0.023*
H2B 0.3049 0.5210 0.6546 0.023*
C3 0.4799 (2) 0.49415 (6) 0.78003 (19) 0.0222 (4)
H3A 0.4297 0.4867 0.8403 0.027*
H3B 0.5338 0.4697 0.7709 0.027*
C4 0.5667 (2) 0.53283 (6) 0.82932 (19) 0.0238 (4)
H4A 0.5202 0.5540 0.8665 0.029*
H4B 0.6510 0.5250 0.8972 0.029*
C5 0.59098 (19) 0.54950 (6) 0.70556 (19) 0.0201 (4)
H5A 0.6084 0.5802 0.7119 0.024*
H5B 0.6666 0.5349 0.6896 0.024*
C6 −0.0943 (2) 0.58600 (9) 0.5866 (2) 0.0350 (5)
H6A −0.0571 0.6055 0.6612 0.042*
H6B −0.1916 0.5853 0.5674 0.042*
C7 −0.0388 (3) 0.54232 (9) 0.6268 (3) 0.0417 (6)
H7A −0.0801 0.5224 0.5558 0.063*
H7B −0.0576 0.5337 0.7068 0.063*
H7C 0.0572 0.5426 0.6437 0.063*
C8 −0.1738 (2) 0.57717 (7) 0.3059 (2) 0.0285 (4)
H8A −0.1613 0.5466 0.3233 0.034*
H8B −0.2656 0.5844 0.3014 0.034*
C9 −0.1549 (3) 0.58705 (9) 0.1739 (2) 0.0379 (6)
H9A −0.1690 0.6172 0.1553 0.057*
H9B −0.2189 0.5709 0.1043 0.057*
H9C −0.0647 0.5794 0.1772 0.057*
C10 −0.1319 (2) 0.65879 (8) 0.4228 (3) 0.0332 (5)
H10A −0.1436 0.6691 0.3326 0.040*
H10B −0.2207 0.6569 0.4335 0.040*
C11 −0.0480 (3) 0.69041 (8) 0.5220 (3) 0.0432 (6)
H11A −0.0424 0.6817 0.6112 0.065*
H11B −0.0890 0.7183 0.5040 0.065*
H11C 0.0412 0.6915 0.5144 0.065*
C12 0.4059 (2) 0.75778 (7) 0.6313 (2) 0.0287 (5)
H12A 0.4587 0.7807 0.6861 0.034*
H12B 0.3690 0.7683 0.5400 0.034*
C13 0.2925 (3) 0.74600 (9) 0.6827 (3) 0.0435 (6)
H13A 0.2441 0.7219 0.6328 0.065*
H13B 0.2322 0.7700 0.6723 0.065*
H13C 0.3284 0.7385 0.7761 0.065*
C14 0.6344 (3) 0.73513 (8) 0.5657 (3) 0.0387 (6)
H14A 0.6573 0.7640 0.5999 0.046*
H14B 0.7163 0.7180 0.5937 0.046*
C15 0.5811 (4) 0.73634 (9) 0.4171 (3) 0.0517 (8)
H15A 0.5621 0.7076 0.3830 0.078*
H15B 0.6471 0.7491 0.3828 0.078*
H15C 0.4995 0.7531 0.3893 0.078*
C16 0.6077 (2) 0.70895 (7) 0.8114 (2) 0.0322 (5)
H16A 0.6675 0.7335 0.8377 0.039*
H16B 0.5451 0.7098 0.8626 0.039*
C17 0.6886 (3) 0.66909 (9) 0.8443 (3) 0.0393 (6)
H17A 0.6292 0.6447 0.8289 0.059*
H17B 0.7439 0.6697 0.9369 0.059*
H17C 0.7454 0.6669 0.7884 0.059*
C18 0.2471 (2) 0.56150 (6) −0.03875 (19) 0.0223 (4)
H18A 0.2167 0.5687 −0.1335 0.027*
H18B 0.3265 0.5434 −0.0219 0.027*
C19 0.1383 (2) 0.53638 (7) −0.0080 (2) 0.0291 (5)
H19A 0.1670 0.5292 0.0858 0.044*
H19B 0.1209 0.5105 −0.0604 0.044*
H19C 0.0573 0.5533 −0.0297 0.044*
C20 0.1873 (2) 0.65065 (7) −0.0452 (2) 0.0262 (4)
H20A 0.2228 0.6788 −0.0128 0.031*
H20B 0.1890 0.6478 −0.1366 0.031*
C21 0.0443 (2) 0.64775 (8) −0.0457 (2) 0.0336 (5)
H21A 0.0058 0.6210 −0.0855 0.050*
H21B −0.0069 0.6712 −0.0969 0.050*
H21C 0.0422 0.6492 0.0448 0.050*
C22 0.4553 (2) 0.62219 (7) 0.0359 (2) 0.0237 (4)
H22A 0.5156 0.5980 0.0675 0.028*
H22B 0.4427 0.6259 −0.0590 0.028*
C23 0.5198 (3) 0.66167 (8) 0.1099 (2) 0.0358 (5)
H23A 0.4631 0.6861 0.0754 0.054*
H23B 0.6064 0.6660 0.0981 0.054*
H23C 0.5312 0.6583 0.2038 0.054*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01310 (14) 0.02656 (16) 0.02473 (15) −0.00123 (11) 0.00588 (11) −0.00501 (12)
Cu2 0.02180 (15) 0.01514 (14) 0.02611 (15) −0.00383 (11) 0.00876 (12) −0.00443 (11)
Cu3 0.03038 (17) 0.02277 (15) 0.01416 (14) 0.00065 (12) 0.00914 (12) 0.00068 (11)
Cl1 0.0220 (2) 0.0212 (2) 0.01358 (18) 0.00073 (16) 0.00701 (16) −0.00123 (15)
Cl2 0.0218 (2) 0.0185 (2) 0.0179 (2) 0.00308 (16) 0.00661 (17) 0.00183 (15)
S1 0.0173 (2) 0.0152 (2) 0.0159 (2) −0.00239 (15) 0.00490 (16) −0.00200 (15)
S2 0.0158 (2) 0.0155 (2) 0.0199 (2) −0.00078 (15) 0.00855 (17) −0.00004 (16)
P1 0.0128 (2) 0.0219 (2) 0.0203 (2) −0.00112 (17) 0.00482 (18) −0.00132 (18)
P2 0.0190 (2) 0.0146 (2) 0.0294 (3) −0.00147 (17) 0.0047 (2) −0.00271 (19)
P3 0.0240 (2) 0.0181 (2) 0.0136 (2) 0.00122 (18) 0.00702 (18) −0.00037 (17)
N1 0.0171 (7) 0.0130 (7) 0.0189 (7) 0.0005 (6) 0.0064 (6) −0.0003 (6)
C1 0.0172 (8) 0.0131 (8) 0.0169 (8) 0.0018 (6) 0.0078 (7) −0.0028 (6)
C2 0.0225 (9) 0.0150 (9) 0.0210 (9) 0.0001 (7) 0.0088 (8) 0.0029 (7)
C3 0.0296 (11) 0.0186 (9) 0.0196 (9) 0.0032 (8) 0.0096 (8) 0.0026 (7)
C4 0.0299 (11) 0.0213 (10) 0.0177 (9) 0.0030 (8) 0.0038 (8) −0.0001 (7)
C5 0.0190 (9) 0.0173 (9) 0.0212 (9) 0.0013 (7) 0.0024 (7) 0.0000 (7)
C6 0.0254 (11) 0.0531 (15) 0.0265 (11) −0.0062 (10) 0.0082 (9) 0.0025 (10)
C7 0.0346 (13) 0.0498 (16) 0.0327 (12) −0.0154 (11) −0.0005 (10) 0.0135 (11)
C8 0.0230 (10) 0.0317 (11) 0.0286 (11) −0.0046 (9) 0.0050 (8) −0.0029 (9)
C9 0.0364 (13) 0.0504 (15) 0.0243 (11) −0.0012 (11) 0.0062 (10) −0.0042 (10)
C10 0.0245 (11) 0.0307 (12) 0.0426 (13) 0.0035 (9) 0.0083 (10) −0.0036 (10)
C11 0.0314 (13) 0.0334 (13) 0.0651 (18) −0.0017 (10) 0.0159 (12) −0.0186 (12)
C12 0.0337 (12) 0.0184 (10) 0.0300 (11) 0.0038 (8) 0.0045 (9) −0.0029 (8)
C13 0.0337 (13) 0.0317 (13) 0.0680 (18) 0.0024 (10) 0.0204 (13) −0.0126 (12)
C14 0.0443 (14) 0.0300 (12) 0.0513 (15) −0.0103 (10) 0.0286 (13) −0.0079 (11)
C15 0.085 (2) 0.0332 (14) 0.0538 (17) −0.0146 (14) 0.0455 (17) −0.0111 (12)
C16 0.0313 (12) 0.0290 (11) 0.0310 (11) −0.0019 (9) 0.0027 (9) −0.0041 (9)
C17 0.0324 (13) 0.0386 (14) 0.0374 (13) −0.0003 (10) −0.0021 (10) 0.0007 (11)
C18 0.0281 (10) 0.0209 (9) 0.0181 (9) −0.0013 (8) 0.0076 (8) −0.0014 (7)
C19 0.0319 (12) 0.0264 (11) 0.0281 (11) −0.0069 (9) 0.0084 (9) −0.0022 (8)
C20 0.0341 (11) 0.0236 (10) 0.0232 (10) 0.0101 (8) 0.0123 (9) 0.0034 (8)
C21 0.0300 (12) 0.0345 (12) 0.0349 (12) 0.0096 (9) 0.0082 (10) 0.0020 (10)
C22 0.0269 (10) 0.0260 (10) 0.0185 (9) −0.0022 (8) 0.0074 (8) −0.0019 (8)
C23 0.0417 (14) 0.0367 (13) 0.0304 (12) −0.0135 (11) 0.0132 (10) −0.0083 (10)

Geometric parameters (Å, º)

Cu1—Cl1 2.3474 (5) C8—H8B 0.9900
Cu1—Cl2 2.5809 (5) C9—H9A 0.9800
Cu1—S1 2.3282 (5) C9—H9B 0.9800
Cu1—P1 2.1936 (5) C9—H9C 0.9800
Cu2—Cl1 2.3640 (5) C10—C11 1.527 (3)
Cu2—Cl2 2.5324 (5) C10—H10A 0.9900
Cu2—S2 2.3556 (5) C10—H10B 0.9900
Cu2—P2 2.2018 (6) C11—H11A 0.9800
Cu3—Cl2 2.3912 (5) C11—H11B 0.9800
Cu3—S1 2.4002 (5) C11—H11C 0.9800
Cu3—S2 2.4939 (5) C12—C13 1.526 (4)
Cu3—P3 2.1841 (5) C12—H12A 0.9900
Cu1—Cu3 3.0216 (4) C12—H12B 0.9900
S1—C1 1.7367 (19) C13—H13A 0.9800
S2—C1 1.7330 (19) C13—H13B 0.9800
P1—C10 1.831 (2) C13—H13C 0.9800
P1—C8 1.836 (2) C14—C15 1.511 (4)
P1—C6 1.830 (2) C14—H14A 0.9900
P2—C14 1.816 (2) C14—H14B 0.9900
P2—C12 1.822 (2) C15—H15A 0.9800
P2—C16 1.849 (2) C15—H15B 0.9800
P3—C20 1.830 (2) C15—H15C 0.9800
P3—C22 1.836 (2) C16—C17 1.508 (3)
P3—C18 1.842 (2) C16—H16A 0.9900
N1—C1 1.313 (2) C16—H16B 0.9900
N1—C5 1.477 (2) C17—H17A 0.9800
N1—C2 1.480 (2) C17—H17B 0.9800
C2—C3 1.530 (3) C17—H17C 0.9800
C2—H2A 0.9900 C18—C19 1.526 (3)
C2—H2B 0.9900 C18—H18A 0.9900
C3—C4 1.527 (3) C18—H18B 0.9900
C3—H3A 0.9900 C19—H19A 0.9800
C3—H3B 0.9900 C19—H19B 0.9800
C4—C5 1.526 (3) C19—H19C 0.9800
C4—H4A 0.9900 C20—C21 1.523 (3)
C4—H4B 0.9900 C20—H20A 0.9900
C5—H5A 0.9900 C20—H20B 0.9900
C5—H5B 0.9900 C21—H21A 0.9800
C6—C7 1.515 (4) C21—H21B 0.9800
C6—H6A 0.9900 C21—H21C 0.9800
C6—H6B 0.9900 C22—C23 1.525 (3)
C7—H7A 0.9800 C22—H22A 0.9900
C7—H7B 0.9800 C22—H22B 0.9900
C7—H7C 0.9800 C23—H23A 0.9800
C8—C9 1.524 (3) C23—H23B 0.9800
C8—H8A 0.9900 C23—H23C 0.9800
Cl1—Cu1—Cl2 96.188 (18) C9—C8—P1 112.35 (16)
Cl1—Cu1—S1 104.585 (19) C9—C8—H8A 109.1
Cl1—Cu1—P1 115.51 (2) P1—C8—H8A 109.1
Cl2—Cu1—S1 100.954 (18) C9—C8—H8B 109.1
Cl2—Cu1—P1 108.90 (2) P1—C8—H8B 109.1
S1—Cu1—P1 125.81 (2) H8A—C8—H8B 107.9
Cl1—Cu2—Cl2 97.080 (18) C8—C9—H9A 109.5
Cl1—Cu2—S2 106.406 (19) C8—C9—H9B 109.5
Cl1—Cu2—P2 113.35 (2) H9A—C9—H9B 109.5
Cl2—Cu2—S2 97.904 (18) C8—C9—H9C 109.5
Cl2—Cu2—P2 112.82 (2) H9A—C9—H9C 109.5
S2—Cu2—P2 124.87 (2) H9B—C9—H9C 109.5
Cl2—Cu3—S1 104.566 (18) C11—C10—P1 112.60 (17)
Cl2—Cu3—S2 98.030 (18) C11—C10—H10A 109.1
Cl2—Cu3—P3 118.56 (2) P1—C10—H10A 109.1
S1—Cu3—S2 74.935 (17) C11—C10—H10B 109.1
S1—Cu3—P3 127.39 (2) P1—C10—H10B 109.1
S2—Cu3—P3 123.04 (2) H10A—C10—H10B 107.8
P1—Cu1—Cu3 132.231 (19) C10—C11—H11A 109.5
S1—Cu1—Cu3 51.338 (13) C10—C11—H11B 109.5
Cl1—Cu1—Cu3 109.575 (16) H11A—C11—H11B 109.5
Cl2—Cu1—Cu3 49.769 (12) C10—C11—H11C 109.5
P3—Cu3—Cu1 149.44 (2) H11A—C11—H11C 109.5
Cl2—Cu3—Cu1 55.492 (13) H11B—C11—H11C 109.5
S1—Cu3—Cu1 49.237 (13) C13—C12—P2 111.61 (16)
S2—Cu3—Cu1 86.926 (14) C13—C12—H12A 109.3
Cu1—Cl1—Cu2 81.004 (17) P2—C12—H12A 109.3
Cu3—Cl2—Cu2 81.010 (16) C13—C12—H12B 109.3
Cu3—Cl2—Cu1 74.739 (16) P2—C12—H12B 109.3
Cu2—Cl2—Cu1 73.508 (15) H12A—C12—H12B 108.0
C1—S1—Cu1 96.15 (6) C12—C13—H13A 109.5
C1—S1—Cu3 84.76 (6) C12—C13—H13B 109.5
Cu1—S1—Cu3 79.425 (17) H13A—C13—H13B 109.5
C1—S2—Cu2 94.21 (6) C12—C13—H13C 109.5
C1—S2—Cu3 81.97 (6) H13A—C13—H13C 109.5
Cu2—S2—Cu3 82.517 (17) H13B—C13—H13C 109.5
C10—P1—C8 102.12 (11) C15—C14—P2 111.1 (2)
C10—P1—C6 102.40 (12) C15—C14—H14A 109.4
C8—P1—C6 102.94 (11) P2—C14—H14A 109.4
C10—P1—Cu1 115.53 (8) C15—C14—H14B 109.4
C8—P1—Cu1 118.31 (8) P2—C14—H14B 109.4
C6—P1—Cu1 113.48 (8) H14A—C14—H14B 108.0
C14—P2—C12 102.29 (12) C14—C15—H15A 109.5
C14—P2—C16 102.70 (13) C14—C15—H15B 109.5
C12—P2—C16 101.70 (11) H15A—C15—H15B 109.5
C14—P2—Cu2 117.20 (8) C14—C15—H15C 109.5
C12—P2—Cu2 115.53 (8) H15A—C15—H15C 109.5
C16—P2—Cu2 115.24 (8) H15B—C15—H15C 109.5
C20—P3—C22 102.17 (10) C17—C16—P2 112.33 (17)
C20—P3—C18 104.21 (10) C17—C16—H16A 109.1
C22—P3—C18 101.71 (10) P2—C16—H16A 109.1
C20—P3—Cu3 114.89 (7) C17—C16—H16B 109.1
C22—P3—Cu3 113.81 (7) P2—C16—H16B 109.1
C18—P3—Cu3 118.01 (7) H16A—C16—H16B 107.9
C1—N1—C5 124.37 (16) C16—C17—H17A 109.5
C1—N1—C2 123.24 (16) C16—C17—H17B 109.5
C5—N1—C2 111.41 (15) H17A—C17—H17B 109.5
N1—C1—S2 121.62 (14) C16—C17—H17C 109.5
N1—C1—S1 120.11 (14) H17A—C17—H17C 109.5
S2—C1—S1 118.25 (11) H17B—C17—H17C 109.5
N1—C2—C3 103.77 (16) C19—C18—P3 114.33 (14)
N1—C2—H2A 111.0 C19—C18—H18A 108.7
C3—C2—H2A 111.0 P3—C18—H18A 108.7
N1—C2—H2B 111.0 C19—C18—H18B 108.7
C3—C2—H2B 111.0 P3—C18—H18B 108.7
H2A—C2—H2B 109.0 H18A—C18—H18B 107.6
C4—C3—C2 103.25 (15) C18—C19—H19A 109.5
C4—C3—H3A 111.1 C18—C19—H19B 109.5
C2—C3—H3A 111.1 H19A—C19—H19B 109.5
C4—C3—H3B 111.1 C18—C19—H19C 109.5
C2—C3—H3B 111.1 H19A—C19—H19C 109.5
H3A—C3—H3B 109.1 H19B—C19—H19C 109.5
C5—C4—C3 103.30 (16) C21—C20—P3 113.07 (16)
C5—C4—H4A 111.1 C21—C20—H20A 109.0
C3—C4—H4A 111.1 P3—C20—H20A 109.0
C5—C4—H4B 111.1 C21—C20—H20B 109.0
C3—C4—H4B 111.1 P3—C20—H20B 109.0
H4A—C4—H4B 109.1 H20A—C20—H20B 107.8
N1—C5—C4 102.84 (16) C20—C21—H21A 109.5
N1—C5—H5A 111.2 C20—C21—H21B 109.5
C4—C5—H5A 111.2 H21A—C21—H21B 109.5
N1—C5—H5B 111.2 C20—C21—H21C 109.5
C4—C5—H5B 111.2 H21A—C21—H21C 109.5
H5A—C5—H5B 109.1 H21B—C21—H21C 109.5
C7—C6—P1 113.13 (18) C23—C22—P3 112.66 (16)
C7—C6—H6A 109.0 C23—C22—H22A 109.1
P1—C6—H6A 109.0 P3—C22—H22A 109.1
C7—C6—H6B 109.0 C23—C22—H22B 109.1
P1—C6—H6B 109.0 P3—C22—H22B 109.1
H6A—C6—H6B 107.8 H22A—C22—H22B 107.8
C6—C7—H7A 109.5 C22—C23—H23A 109.5
C6—C7—H7B 109.5 C22—C23—H23B 109.5
H7A—C7—H7B 109.5 H23A—C23—H23B 109.5
C6—C7—H7C 109.5 C22—C23—H23C 109.5
H7A—C7—H7C 109.5 H23A—C23—H23C 109.5
H7B—C7—H7C 109.5 H23B—C23—H23C 109.5
C5—N1—C1—S2 6.0 (2) C6—P1—C8—C9 −176.38 (18)
C2—N1—C1—S2 173.70 (13) Cu1—P1—C8—C9 −50.4 (2)
C5—N1—C1—S1 −172.23 (14) C8—P1—C10—C11 −176.76 (19)
C2—N1—C1—S1 −4.5 (2) C6—P1—C10—C11 76.9 (2)
Cu2—S2—C1—N1 −93.58 (15) Cu1—P1—C10—C11 −47.0 (2)
Cu3—S2—C1—N1 −175.40 (15) C14—P2—C12—C13 178.71 (19)
Cu2—S2—C1—S1 84.66 (10) C16—P2—C12—C13 −75.3 (2)
Cu3—S2—C1—S1 2.84 (9) Cu2—P2—C12—C13 50.2 (2)
Cu1—S1—C1—N1 96.59 (14) C12—P2—C14—C15 −81.4 (2)
Cu3—S1—C1—N1 175.33 (15) C16—P2—C14—C15 173.45 (19)
Cu1—S1—C1—S2 −81.67 (10) Cu2—P2—C14—C15 46.1 (2)
Cu3—S1—C1—S2 −2.93 (9) C14—P2—C16—C17 −84.3 (2)
C1—N1—C2—C3 −176.54 (16) C12—P2—C16—C17 170.03 (19)
C5—N1—C2—C3 −7.4 (2) Cu2—P2—C16—C17 44.3 (2)
N1—C2—C3—C4 28.69 (19) C20—P3—C18—C19 −91.44 (17)
C2—C3—C4—C5 −39.4 (2) C22—P3—C18—C19 162.62 (16)
C1—N1—C5—C4 152.09 (17) Cu3—P3—C18—C19 37.36 (18)
C2—N1—C5—C4 −16.9 (2) C22—P3—C20—C21 179.63 (16)
C3—C4—C5—N1 34.37 (19) C18—P3—C20—C21 74.03 (18)
C10—P1—C6—C7 −178.43 (18) Cu3—P3—C20—C21 −56.63 (18)
C8—P1—C6—C7 75.85 (19) C20—P3—C22—C23 73.77 (18)
Cu1—P1—C6—C7 −53.22 (19) C18—P3—C22—C23 −178.70 (16)
C10—P1—C8—C9 77.7 (2) Cu3—P3—C22—C23 −50.70 (18)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the (Cu,S1,S2,C1) chelate ring.

D—H···A D—H H···A D···A D—H···A
C20—H20B···Cl1i 0.99 2.81 3.722 (2) 154
C22—H22B···Cl1i 0.99 2.80 3.720 (2) 154
C3—H3B···Cg1ii 0.99 2.83 3.705 (2) 148

Symmetry codes: (i) x, y, z−1; (ii) −x+1, −y+1, −z+1.

References

  1. Afzaal, M., Rosenberg, C. L., Malik, M. A., White, A. J. P. & O’Brien, P. (2011). New J. Chem. 35, 2773–2780.
  2. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Chen, B.-J., Jamaludin, N. S., Khoo, C.-H., See, T.-H., Sim, J.-H., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2016). J. Inorg. Biochem. 163, 68–80. [DOI] [PubMed]
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Huang, S.-B. & Situ, Y. (2003). Chin. J. Struct. Chem. 22, 260–264.
  7. Jamaludin, N. S., Halim, S. N. A., Khoo, C.-H., Chen, B.-J., See, T.-H., Sim, J.-H., Cheah, Y.-K., Seng, H.-L. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 341–349.
  8. Jotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1085–1092. [DOI] [PMC free article] [PubMed]
  9. Kishore, P. V. V. N., Liao, J.-H., Hou, H.-N., Lin, Y.-R. & Liu, C. W. (2016). Inorg. Chem. 55, 3663–3673. [DOI] [PubMed]
  10. Kumar, A., Mayer-Figge, H., Sheldrick, W. S. & Singh, N. (2009). Eur. J. Inorg. Chem. 2009, 2720–2725.
  11. Langer, R., Wünsche, L., Fenske, D. & Fuhr, O. Z. (2009). Z. Anorg. Allg. Chem. 635, 2488–2494.
  12. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  13. Rajput, G., Yadav, M. K., Drew, M. G. B. & Singh, N. (2015). Inorg. Chem. 54, 2572–2579. [DOI] [PubMed]
  14. Raston, C. L. & White, A. H. (1975). J. Chem. Soc. Dalton Trans. pp. 2422–2425.
  15. Rigaku Oxford Diffraction (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  18. Sim, J.-H., Jamaludin, N. S., Khoo, C.-H., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2014). Gold Bull. 47, 225–236.
  19. Tan, S. L., Yeo, C. I., Heard, P. J., Akien, G. R., Halcovitch, N. R. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1799–1805. [DOI] [PMC free article] [PubMed]
  20. Tiekink, E. R. T. (2017). Coord. Chem. Rev. http://dx.doi.org/10.1016/j.ccr.2017.01.009.
  21. Tiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. 47, 6623–6625. [DOI] [PubMed]
  22. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  23. Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017005382/hb7670sup1.cif

e-73-00720-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017005382/hb7670Isup2.hkl

e-73-00720-Isup2.hkl (571KB, hkl)

CCDC reference: 1543298

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES