Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Apr 21;73(Pt 5):735–737. doi: 10.1107/S2056989017005825

Crystal structure of 2-chloro-1,3-bis­(2,6-diiso­propyl­phen­yl)-1,3,2-di­aza­phospho­lidine 2-oxide

Alex J Veinot a, Arthur D Hendsbee a, Jason D Masuda a,*
PMCID: PMC5418795  PMID: 28529787

The synthesis, spectroscopic and crystal structure of 2-chloro-1,3-bis­(2,6-diiso­propyl­phen­yl)-1,3,2-di­aza­phospho­lidine 2-oxide are reported.

Keywords: crystal structure; N-heterocyclic phosphine; NHP; 1,3,2-di­aza­phospho­lidine 2-oxide

Abstract

The title compound, C26H38ClN2OP, was synthesized by reacting phosphoryl chloride with N,N′-bis­(2,6-diiso­propyl­phen­yl)ethane-1,2-di­amine in the presence of N-methyl­morpholine which acted as an auxilliary base to quench the HCl released as a by-product. The resultant N-heterocyclic phosphine five-membered ring adopts a half-chair conformation and features a tetra­coordinate P atom ligated by the chelating di­amine [P—N = 1.6348 (14) and 1.6192 (14) Å], one double-bonded O atom [P1—O1 = 1.4652 (12) Å] and one Cl atom [P1—Cl1 = 2.0592 (7) Å]. The sterically hindered 2,6-diiso­propyl­phenyl (Dipp) groups twist away from the central heterocycle, with torsion angles of −75.66 (19) and 83.39 (19)° for the P—N—Car—Car links. A number of intra­molecular C—H⋯N, C—H⋯O and C—H⋯Cl close contacts occur. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds to generate [010] chains. C—H⋯π inter­actions are also observed.

Chemical context  

1,3,2-Di­aza­phospho­lidines are a class of N-heterocyclic phosphines (NHPs) that feature an N—P—N moiety bridged by a C2H4 fragment, thus forming a five-membered ring. Derivatives are often substituted by alkyl, aryl, or halogen groups at the phospho­rus position (denoted as position 2), allowing them to serve as both ligands and/or precursors in organometallic chemistry (Gudat, 2010). The title compound, 2-chloro-1,3-bis­(2,6-diiso­propyl­phen­yl)-1,3,2-di­aza­phospho­li­dine 2-oxide, is closely related to these compounds and its analogs are commonly used as precursor mol­ecules for the synthesis of pharmaceuticals targeted towards immunosuppressants and chemotherapy medications (Gholivand & Mojahed, 2005). The crystal structure of the title compound is reported herein and features a saturated five-membered NHP substituted at the phospho­rus position by both O and Cl atoms.graphic file with name e-73-00735-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. The title compound crystallizes in the monoclinic space group P21/n with one mol­ecule present in the asymmetric unit. Bond lengths between the flanking nitro­gen atoms show a statistical difference when compared to each other [P1—N1 = 1.6348 (14) Å and P1—N2 = 1.6192 (14) Å] and is likely caused by the half-chair (or envelope) conformation of the heterocycle at the C2 position. The N—P—N bond angle of 95.60 (7)° deviates significantly from an ideal tetra­hedral geometry. Bond lengths between P1—Cl1 and P1—O1 are 2.0592 (7) and 1.4652 (12) Å, respectively, with a bond angle of 105.51 (5)° for the O—P—Cl atoms. The isopropyl groups are oriented away from the central five-membered ring and lead to intra­molecular short-contact D—H⋯A inter­actions between methine atoms H9, H12, H21, and H24, and N1 and N2. Intra­molecular short-contact D—H⋯A inter­actions are also present for Cl1 and O1 atoms and are summarized in Table 1. The steric demands of the bulky 2,6-diiso­propyl­phenyl groups cause the aromatic rings to twist away from the central five-membered ring with torsion angles of −75.66 (19) and 83.39 (19)° for P1—N1—C3—C4 and P1—N2—C15—C20, respectively. The dihedral angles between the heterocyclic ring (all atoms) and the C3–C8 and C15–C20 aromatic rings are 76.61 (9) and 88.75 (9)°, respectively.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cl1 1.00 2.91 3.543 (2) 122
C21—H21⋯Cl1 1.00 2.88 3.6006 (19) 130
C9—H9⋯O1 1.00 2.63 3.273 (2) 122
C25—H25C⋯O1 0.98 2.61 3.407 (2) 138
C9—H9⋯N1 1.00 2.43 2.927 (2) 110
C12—H12⋯N1 1.00 2.41 2.904 (2) 110
C21—H21⋯N2 1.00 2.42 2.930 (2) 111
C24—H24⋯N2 1.00 2.41 2.915 (2) 110
C2—H2A⋯O1i 0.99 2.36 3.319 (2) 164

Symmetry code: (i) Inline graphic.

Supra­molecular features  

The crystal of the title compound contains inter­molecular short-contact D—H⋯A π-inter­actions between C6—H6 and the centroid of the C3–C8 ring of a neighboring mol­ecule (transformation = Inline graphic − x, −1 + y, Inline graphic − z), with an H⋯centroid distance of 2.740 (3) Å. The isopropyl groups of the flanking aromatic rings also display short contacts for Cl1 and O1, with H⋯Cl distances measuring 2.950 (5) and 3.086 (6) Å between H14A⋯Cl1 and H23B⋯Cl1, respectively. A significantly short contact of 2.357 (2) Å occurs for H2A⋯O1. A distance this small is likely indicative of C—H⋯O hydrogen bonding (Fig. 2, Table 1) accepted by the O atom from a neighbouring ethyl­ene bridge related by symmetry (transformation = x, y − 1, z).

Figure 2.

Figure 2

The packing of the title compound, showing the formation of C—H⋯O hydrogen bonds (red and cyan lines).

Database survey  

A search of the Cambridge Structural Database (Groom et al., 2016) produced two matches for 1,3,2-(di­aryl­amino)­phospho­lidine-2-oxide-2-halide derivatives; 1,3-di(p-tol­yl)-2-chloro-1,3,2-di­aza­phospho­lidine-2-oxide (p-tolyl = 4-methyl­phen­yl), and the analogous fluorine derivative (CSD identifiers WASFEC and SIVJEN, respectively; Gholivand & Mojahed, 2005). One other closely related bicyclic structure was found (CSD identifier NUMBAY; Koeller et al., 1995), which features N-benzyl substituents and a cyclo­hexyl ring fused to the bridging ethyl­ene C atoms.

Synthesis and crystallization  

The synthesis of the title compound was achieved using a similar method as used for 2-chloro-1,3-bis­(2,6-diiso­propyl­phen­yl)-1,3,2-di­aza­phospho­lidine (Caputo et al., 2008), except phosphoryl chloride was used instead of phospho­rus trichloride. In a 200 ml Schlenk flask, 1.142 g (3.00 mmol, 1 eq.) of N,N′-bis­(2,6-diiso­propyl­phen­yl)ethane-1,2-di­amine were dissolved in 45 ml of THF producing a colourless solution. Separately 0.478 g (3.11 mmol, 1.04 eq.) of phosphoryl chloride and 0.959 g (9.48 mmol, 3.16 eq.) of N-methyl­morpholine were dissolved in 75 ml of THF producing a colourless solution, and transferred to a 125 ml pressure-equalizing dropping funnel. The di­amine solution was cooled to 195 K using a liquid nitro­gen/acetone bath and monitored using a thermocouple, and once cold (ca 10 minutes) the phosphoryl chloride mixture was added dropwise to the di­amine solution over 30 minutes. Once the addition was complete, the colourless reaction mixture was left to stir at 195 K for 60 minutes, after which it was allowed to warm to room temperature and left to stir for two days at room temperature. The reaction was monitored by 31P{1H} NMR spectroscopy, and became pale yellow in colour with a slight amount of colourless precipitate as it proceeded. Once the starting material was completely consumed, the reaction mixture was dried in vacuo to give a pale-yellow coloured solid. Extraction of this solid with 50 ml of a 3:2 mixture of penta­ne:THF produced the desired product as a pale-yellow coloured solution following filtration through Celite, which when dried in vacuo afforded 0.919 g (66%) of the desired product as a faintly yellow coloured powder. Crystals of the product in the form of colourless blocks were obtained by concentrating the filtrate and storing in a 238 K freezer overnight.

1H NMR (CDCl3): δ 7.32 (t, 3 J HH = 7.6 Hz, 2H, p-Dipp), 7.21 (m, 3 J HH = 7.4 Hz, 4H, m-Dipp), 3.86–3.50 (m, 8H, iPr—CH, NHC—CH2), 1.38 (d, 3 J HH = 6.8 Hz, 6H, iPr—CH3), 1.35 (d, 3 J HH = 6.8 Hz, 6H, iPr—CH3), 1.28 (d, 3 J HH = 6.9 Hz, 6H, iPr—CH3), 1.26 ppm (d, 3 J HH = 6.9 Hz, 6H, iPr—CH3). 13C{1H} NMR (CDCl3): δ 149.8, 149.6, 131.8, 129.1, 125.0, 124.9, 48.8, 29.0, 25.9, 24.5, 23.9 ppm. 31P{1H} NMR (CDCl3): δ 15.1 ppm. IR (KBr pellet): ν 3068 (w), 2967 (s), 2929 (m), 2869 (m), 1681 (w), 1588 (w), 1464 (s), 1448 (s), 1383 (w), 1368 (w), 1348 (w) 1323 (m), 1268 (s), 1217 (w), 1194 (w), 1106 (m), 1093 (m), 1077 (m), 1056 (m), 1043 (w), 934 (w), 860 (w), 803 (s), 756 (w), 747 (w), 733 (w), 648 (w), 592 (w), 575 (w), 558 (w), 544 (w), 496 (s) 466 (w), 437 (w), 412 cm−1 (w). m.p. 509.7–511.0 K.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were included in geometrically idealized positions and refined using a riding model [C—H = 0.95–0.99; U iso(H) = 1.2–1.5U eq(C)]. The methyl H atoms were allowed to rotate, but not to tip, to best fit the electron density.

Table 2. Experimental details.

Crystal data
Chemical formula C26H38ClN2OP
M r 461.00
Crystal system, space group Monoclinic, P21/n
Temperature (K) 104
a, b, c (Å) 19.984 (3), 6.6328 (11), 20.140 (3)
β (°) 106.818 (2)
V3) 2555.4 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.25 × 0.21 × 0.17
 
Data collection
Diffractometer Siemens/Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.578, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 30194, 6307, 4640
R int 0.073
(sin θ/λ)max−1) 0.669
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.043, 0.109, 1.04
No. of reflections 6307
No. of parameters 288
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.33

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXT2014 (Sheldrick, 2015a ), SHELXL2016 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017005825/hb7671sup1.cif

e-73-00735-sup1.cif (931.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017005825/hb7671Isup2.hkl

e-73-00735-Isup2.hkl (501.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017005825/hb7671Isup3.cml

CCDC reference: 1544709

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Natural Sciences and Engineering Research Council of Canada (through the Discovery Grants Program to JDM). JDM also acknowledges support from the Canadian Foundation for Innovation, the Nova Scotia Research and Innovation Trust Fund and Saint Mary’s University.

supplementary crystallographic information

Crystal data

C26H38ClN2OP F(000) = 992
Mr = 461.00 Dx = 1.198 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 19.984 (3) Å Cell parameters from 4093 reflections
b = 6.6328 (11) Å θ = 2.5–24.5°
c = 20.140 (3) Å µ = 0.23 mm1
β = 106.818 (2)° T = 104 K
V = 2555.4 (7) Å3 Block, colourless
Z = 4 0.25 × 0.21 × 0.17 mm

Data collection

Siemens/Bruker APEXII diffractometer 4640 reflections with I > 2σ(I)
Detector resolution: 66 pixels mm-1 Rint = 0.073
φ and ω scans θmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −26→26
Tmin = 0.578, Tmax = 0.746 k = −8→8
30194 measured reflections l = −26→26
6307 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.5837P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
6307 reflections Δρmax = 0.43 e Å3
288 parameters Δρmin = −0.33 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
CL1 0.60905 (2) 0.77730 (7) 0.42592 (2) 0.02113 (12)
P1 0.70785 (2) 0.65590 (7) 0.46135 (2) 0.01383 (11)
O1 0.75532 (6) 0.81335 (17) 0.45109 (6) 0.0181 (3)
N1 0.71214 (7) 0.5695 (2) 0.53850 (7) 0.0149 (3)
N2 0.70937 (7) 0.4369 (2) 0.42630 (7) 0.0147 (3)
C1 0.72101 (10) 0.3487 (3) 0.54424 (9) 0.0196 (4)
H1A 0.692450 0.290717 0.572321 0.024*
H1B 0.770625 0.312993 0.566036 0.024*
C2 0.69615 (9) 0.2713 (3) 0.46958 (9) 0.0183 (4)
H2A 0.722531 0.149108 0.464119 0.022*
H2B 0.645730 0.237947 0.456523 0.022*
C3 0.71736 (9) 0.6963 (2) 0.59765 (8) 0.0149 (3)
C4 0.78155 (9) 0.7887 (3) 0.63099 (9) 0.0189 (4)
C5 0.78352 (10) 0.9197 (3) 0.68551 (9) 0.0245 (4)
H5 0.825951 0.987103 0.708089 0.029*
C6 0.72518 (11) 0.9539 (3) 0.70750 (10) 0.0273 (4)
H6 0.727763 1.044273 0.744756 0.033*
C7 0.66305 (10) 0.8570 (3) 0.67543 (9) 0.0256 (4)
H7 0.623418 0.879569 0.691479 0.031*
C8 0.65767 (9) 0.7266 (3) 0.61984 (9) 0.0192 (4)
C9 0.84815 (9) 0.7422 (3) 0.61222 (9) 0.0223 (4)
H9 0.834851 0.662355 0.568225 0.027*
C10 0.88538 (10) 0.9329 (3) 0.59894 (11) 0.0314 (5)
H10A 0.926952 0.895280 0.585271 0.047*
H10B 0.899393 1.014211 0.641348 0.047*
H10C 0.853666 1.011382 0.561687 0.047*
C11 0.89651 (10) 0.6108 (3) 0.66826 (11) 0.0309 (5)
H11A 0.938829 0.578975 0.655073 0.046*
H11B 0.872366 0.485491 0.673151 0.046*
H11C 0.909329 0.683572 0.712499 0.046*
C12 0.58966 (9) 0.6166 (3) 0.58712 (10) 0.0247 (4)
H12 0.593698 0.549291 0.544010 0.030*
C13 0.52710 (11) 0.7590 (4) 0.56644 (11) 0.0407 (6)
H13A 0.535887 0.864893 0.536069 0.061*
H13B 0.520044 0.820457 0.608159 0.061*
H13C 0.485179 0.683169 0.541819 0.061*
C14 0.57816 (11) 0.4518 (4) 0.63611 (11) 0.0373 (5)
H14A 0.535680 0.375892 0.613176 0.056*
H14B 0.573101 0.513955 0.678539 0.056*
H14C 0.618349 0.360144 0.647930 0.056*
C15 0.72566 (9) 0.4045 (2) 0.36189 (9) 0.0155 (4)
C16 0.67152 (9) 0.3889 (2) 0.29983 (9) 0.0172 (4)
C17 0.68940 (10) 0.3713 (3) 0.23813 (9) 0.0197 (4)
H17 0.653475 0.361779 0.195399 0.024*
C18 0.75855 (10) 0.3673 (3) 0.23807 (9) 0.0203 (4)
H18 0.769988 0.359264 0.195532 0.024*
C19 0.81087 (10) 0.3752 (3) 0.30022 (9) 0.0196 (4)
H19 0.858228 0.368268 0.299803 0.023*
C20 0.79627 (9) 0.3931 (3) 0.36346 (9) 0.0173 (4)
C21 0.59508 (9) 0.3881 (3) 0.29800 (9) 0.0188 (4)
H21 0.592775 0.410635 0.346382 0.023*
C22 0.55404 (10) 0.5564 (3) 0.25268 (10) 0.0295 (5)
H22A 0.555477 0.537843 0.204835 0.044*
H22B 0.574841 0.686840 0.270126 0.044*
H22C 0.505386 0.552822 0.253905 0.044*
C23 0.56189 (11) 0.1827 (3) 0.27379 (11) 0.0306 (5)
H23A 0.513339 0.182330 0.275382 0.046*
H23B 0.588161 0.076821 0.304337 0.046*
H23C 0.562927 0.157514 0.226146 0.046*
C24 0.85570 (9) 0.3942 (3) 0.43053 (9) 0.0195 (4)
H24 0.834454 0.399067 0.469768 0.023*
C25 0.90220 (10) 0.5797 (3) 0.43636 (10) 0.0270 (4)
H25A 0.925377 0.576285 0.399635 0.041*
H25B 0.937539 0.580306 0.481732 0.041*
H25C 0.873536 0.701785 0.431455 0.041*
C26 0.89855 (11) 0.2004 (3) 0.43818 (10) 0.0289 (5)
H26A 0.867806 0.083879 0.435911 0.043*
H26B 0.934841 0.201006 0.482942 0.043*
H26C 0.920487 0.191919 0.400596 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
CL1 0.0179 (2) 0.0199 (2) 0.0225 (2) 0.00405 (17) 0.00101 (17) 0.00066 (17)
P1 0.0146 (2) 0.0125 (2) 0.0134 (2) 0.00099 (17) 0.00254 (17) 0.00000 (17)
O1 0.0209 (7) 0.0144 (6) 0.0190 (6) −0.0012 (5) 0.0058 (5) 0.0009 (5)
N1 0.0180 (8) 0.0122 (7) 0.0139 (7) 0.0010 (6) 0.0035 (6) −0.0002 (6)
N2 0.0183 (8) 0.0135 (7) 0.0129 (7) −0.0003 (6) 0.0054 (6) −0.0011 (6)
C1 0.0260 (10) 0.0132 (9) 0.0198 (9) 0.0013 (7) 0.0068 (8) 0.0021 (7)
C2 0.0230 (9) 0.0135 (9) 0.0187 (9) −0.0013 (7) 0.0066 (7) 0.0008 (7)
C3 0.0191 (9) 0.0131 (8) 0.0111 (8) 0.0009 (7) 0.0024 (7) −0.0003 (6)
C4 0.0231 (9) 0.0170 (9) 0.0153 (8) −0.0007 (7) 0.0034 (7) 0.0017 (7)
C5 0.0304 (11) 0.0233 (10) 0.0156 (9) −0.0080 (8) −0.0001 (8) −0.0017 (8)
C6 0.0406 (12) 0.0220 (10) 0.0185 (9) 0.0009 (9) 0.0074 (9) −0.0056 (8)
C7 0.0286 (11) 0.0297 (11) 0.0196 (10) 0.0059 (9) 0.0088 (8) −0.0023 (8)
C8 0.0197 (9) 0.0214 (9) 0.0157 (9) 0.0017 (7) 0.0039 (7) 0.0006 (7)
C9 0.0166 (9) 0.0291 (11) 0.0185 (9) −0.0024 (8) 0.0008 (7) 0.0016 (8)
C10 0.0215 (10) 0.0386 (12) 0.0308 (11) −0.0073 (9) 0.0023 (9) 0.0077 (9)
C11 0.0242 (11) 0.0321 (12) 0.0318 (11) −0.0004 (9) 0.0007 (9) 0.0051 (9)
C12 0.0181 (10) 0.0374 (12) 0.0192 (9) −0.0009 (8) 0.0062 (8) −0.0030 (8)
C13 0.0225 (11) 0.0671 (17) 0.0309 (12) 0.0118 (11) 0.0052 (9) −0.0062 (11)
C14 0.0280 (12) 0.0538 (15) 0.0309 (12) −0.0152 (10) 0.0096 (9) 0.0020 (10)
C15 0.0209 (9) 0.0115 (8) 0.0155 (8) 0.0002 (7) 0.0072 (7) −0.0014 (7)
C16 0.0217 (9) 0.0119 (8) 0.0191 (9) −0.0007 (7) 0.0076 (7) −0.0019 (7)
C17 0.0253 (10) 0.0162 (9) 0.0160 (9) −0.0010 (7) 0.0035 (8) −0.0017 (7)
C18 0.0275 (10) 0.0175 (9) 0.0190 (9) −0.0004 (8) 0.0116 (8) −0.0024 (7)
C19 0.0211 (9) 0.0159 (9) 0.0237 (9) 0.0004 (7) 0.0097 (8) −0.0007 (7)
C20 0.0203 (9) 0.0128 (8) 0.0196 (9) −0.0011 (7) 0.0070 (7) −0.0004 (7)
C21 0.0177 (9) 0.0220 (10) 0.0151 (9) −0.0019 (7) 0.0021 (7) −0.0018 (7)
C22 0.0210 (10) 0.0392 (12) 0.0280 (11) 0.0049 (9) 0.0068 (9) 0.0092 (9)
C23 0.0312 (11) 0.0328 (12) 0.0304 (11) −0.0131 (9) 0.0130 (9) −0.0099 (9)
C24 0.0163 (9) 0.0225 (10) 0.0199 (9) 0.0013 (7) 0.0056 (7) 0.0004 (7)
C25 0.0213 (10) 0.0251 (10) 0.0305 (11) −0.0029 (8) 0.0010 (8) 0.0019 (8)
C26 0.0305 (11) 0.0273 (11) 0.0270 (11) 0.0081 (9) 0.0052 (9) 0.0032 (9)

Geometric parameters (Å, º)

CL1—P1 2.0592 (7) C13—H13A 0.9800
P1—O1 1.4652 (12) C13—H13B 0.9800
P1—N2 1.6192 (14) C13—H13C 0.9800
P1—N1 1.6348 (14) C14—H14A 0.9800
N1—C3 1.437 (2) C14—H14B 0.9800
N1—C1 1.476 (2) C14—H14C 0.9800
N2—C15 1.442 (2) C15—C16 1.400 (2)
N2—C2 1.473 (2) C15—C20 1.404 (2)
C1—C2 1.529 (2) C16—C17 1.394 (2)
C1—H1A 0.9900 C16—C21 1.517 (2)
C1—H1B 0.9900 C17—C18 1.382 (3)
C2—H2A 0.9900 C17—H17 0.9500
C2—H2B 0.9900 C18—C19 1.380 (3)
C3—C8 1.404 (2) C18—H18 0.9500
C3—C4 1.405 (2) C19—C20 1.392 (2)
C4—C5 1.392 (2) C19—H19 0.9500
C4—C9 1.517 (2) C20—C24 1.519 (2)
C5—C6 1.380 (3) C21—C22 1.523 (3)
C5—H5 0.9500 C21—C23 1.532 (3)
C6—C7 1.381 (3) C21—H21 1.0000
C6—H6 0.9500 C22—H22A 0.9800
C7—C8 1.394 (2) C22—H22B 0.9800
C7—H7 0.9500 C22—H22C 0.9800
C8—C12 1.515 (3) C23—H23A 0.9800
C9—C11 1.529 (3) C23—H23B 0.9800
C9—C10 1.530 (3) C23—H23C 0.9800
C9—H9 1.0000 C24—C25 1.526 (3)
C10—H10A 0.9800 C24—C26 1.527 (3)
C10—H10B 0.9800 C24—H24 1.0000
C10—H10C 0.9800 C25—H25A 0.9800
C11—H11A 0.9800 C25—H25B 0.9800
C11—H11B 0.9800 C25—H25C 0.9800
C11—H11C 0.9800 C26—H26A 0.9800
C12—C13 1.526 (3) C26—H26B 0.9800
C12—C14 1.534 (3) C26—H26C 0.9800
C12—H12 1.0000
O1—P1—N2 118.91 (7) C12—C13—H13A 109.5
O1—P1—N1 121.71 (7) C12—C13—H13B 109.5
N2—P1—N1 95.60 (7) H13A—C13—H13B 109.5
O1—P1—CL1 105.51 (5) C12—C13—H13C 109.5
N2—P1—CL1 109.68 (6) H13A—C13—H13C 109.5
N1—P1—CL1 104.35 (5) H13B—C13—H13C 109.5
C3—N1—C1 122.51 (14) C12—C14—H14A 109.5
C3—N1—P1 123.66 (12) C12—C14—H14B 109.5
C1—N1—P1 113.22 (11) H14A—C14—H14B 109.5
C15—N2—C2 123.16 (13) C12—C14—H14C 109.5
C15—N2—P1 124.30 (11) H14A—C14—H14C 109.5
C2—N2—P1 112.45 (11) H14B—C14—H14C 109.5
N1—C1—C2 105.00 (13) C16—C15—C20 121.87 (15)
N1—C1—H1A 110.7 C16—C15—N2 119.78 (15)
C2—C1—H1A 110.7 C20—C15—N2 118.34 (15)
N1—C1—H1B 110.7 C17—C16—C15 118.09 (16)
C2—C1—H1B 110.7 C17—C16—C21 119.61 (16)
H1A—C1—H1B 108.8 C15—C16—C21 122.30 (15)
N2—C2—C1 105.58 (13) C18—C17—C16 121.10 (17)
N2—C2—H2A 110.6 C18—C17—H17 119.5
C1—C2—H2A 110.6 C16—C17—H17 119.5
N2—C2—H2B 110.6 C19—C18—C17 119.58 (16)
C1—C2—H2B 110.6 C19—C18—H18 120.2
H2A—C2—H2B 108.8 C17—C18—H18 120.2
C8—C3—C4 121.87 (15) C18—C19—C20 121.92 (17)
C8—C3—N1 118.87 (15) C18—C19—H19 119.0
C4—C3—N1 119.25 (15) C20—C19—H19 119.0
C5—C4—C3 117.57 (16) C19—C20—C15 117.35 (16)
C5—C4—C9 119.80 (16) C19—C20—C24 119.82 (16)
C3—C4—C9 122.55 (16) C15—C20—C24 122.81 (15)
C6—C5—C4 121.46 (18) C16—C21—C22 112.06 (15)
C6—C5—H5 119.3 C16—C21—C23 110.57 (15)
C4—C5—H5 119.3 C22—C21—C23 110.65 (16)
C5—C6—C7 120.12 (17) C16—C21—H21 107.8
C5—C6—H6 119.9 C22—C21—H21 107.8
C7—C6—H6 119.9 C23—C21—H21 107.8
C6—C7—C8 120.96 (18) C21—C22—H22A 109.5
C6—C7—H7 119.5 C21—C22—H22B 109.5
C8—C7—H7 119.5 H22A—C22—H22B 109.5
C7—C8—C3 117.96 (16) C21—C22—H22C 109.5
C7—C8—C12 119.95 (16) H22A—C22—H22C 109.5
C3—C8—C12 122.05 (16) H22B—C22—H22C 109.5
C4—C9—C11 110.16 (15) C21—C23—H23A 109.5
C4—C9—C10 112.46 (16) C21—C23—H23B 109.5
C11—C9—C10 111.41 (16) H23A—C23—H23B 109.5
C4—C9—H9 107.5 C21—C23—H23C 109.5
C11—C9—H9 107.5 H23A—C23—H23C 109.5
C10—C9—H9 107.5 H23B—C23—H23C 109.5
C9—C10—H10A 109.5 C20—C24—C25 111.98 (15)
C9—C10—H10B 109.5 C20—C24—C26 110.92 (15)
H10A—C10—H10B 109.5 C25—C24—C26 111.09 (15)
C9—C10—H10C 109.5 C20—C24—H24 107.5
H10A—C10—H10C 109.5 C25—C24—H24 107.5
H10B—C10—H10C 109.5 C26—C24—H24 107.5
C9—C11—H11A 109.5 C24—C25—H25A 109.5
C9—C11—H11B 109.5 C24—C25—H25B 109.5
H11A—C11—H11B 109.5 H25A—C25—H25B 109.5
C9—C11—H11C 109.5 C24—C25—H25C 109.5
H11A—C11—H11C 109.5 H25A—C25—H25C 109.5
H11B—C11—H11C 109.5 H25B—C25—H25C 109.5
C8—C12—C13 112.45 (17) C24—C26—H26A 109.5
C8—C12—C14 110.23 (15) C24—C26—H26B 109.5
C13—C12—C14 110.69 (17) H26A—C26—H26B 109.5
C8—C12—H12 107.8 C24—C26—H26C 109.5
C13—C12—H12 107.8 H26A—C26—H26C 109.5
C14—C12—H12 107.8 H26B—C26—H26C 109.5
O1—P1—N1—C3 46.64 (16) C5—C4—C9—C11 71.0 (2)
N2—P1—N1—C3 175.81 (13) C3—C4—C9—C11 −105.6 (2)
CL1—P1—N1—C3 −72.20 (13) C5—C4—C9—C10 −53.9 (2)
O1—P1—N1—C1 −124.54 (12) C3—C4—C9—C10 129.42 (18)
N2—P1—N1—C1 4.63 (13) C7—C8—C12—C13 52.4 (2)
CL1—P1—N1—C1 116.61 (11) C3—C8—C12—C13 −130.01 (18)
O1—P1—N2—C15 −31.45 (16) C7—C8—C12—C14 −71.7 (2)
N1—P1—N2—C15 −162.56 (14) C3—C8—C12—C14 106.0 (2)
CL1—P1—N2—C15 90.01 (14) C2—N2—C15—C16 88.2 (2)
O1—P1—N2—C2 145.24 (11) P1—N2—C15—C16 −95.46 (18)
N1—P1—N2—C2 14.13 (13) C2—N2—C15—C20 −93.0 (2)
CL1—P1—N2—C2 −93.30 (11) P1—N2—C15—C20 83.39 (19)
C3—N1—C1—C2 168.22 (14) C20—C15—C16—C17 −3.1 (3)
P1—N1—C1—C2 −20.48 (17) N2—C15—C16—C17 175.75 (15)
C15—N2—C2—C1 149.38 (15) C20—C15—C16—C21 176.14 (16)
P1—N2—C2—C1 −27.36 (17) N2—C15—C16—C21 −5.0 (2)
N1—C1—C2—N2 28.46 (18) C15—C16—C17—C18 0.6 (3)
C1—N1—C3—C8 −86.2 (2) C21—C16—C17—C18 −178.65 (16)
P1—N1—C3—C8 103.40 (17) C16—C17—C18—C19 1.9 (3)
C1—N1—C3—C4 94.7 (2) C17—C18—C19—C20 −1.9 (3)
P1—N1—C3—C4 −75.66 (19) C18—C19—C20—C15 −0.5 (3)
C8—C3—C4—C5 −2.7 (3) C18—C19—C20—C24 177.98 (16)
N1—C3—C4—C5 176.29 (15) C16—C15—C20—C19 3.0 (3)
C8—C3—C4—C9 173.98 (16) N2—C15—C20—C19 −175.83 (15)
N1—C3—C4—C9 −7.0 (2) C16—C15—C20—C24 −175.40 (16)
C3—C4—C5—C6 1.8 (3) N2—C15—C20—C24 5.8 (2)
C9—C4—C5—C6 −175.06 (17) C17—C16—C21—C22 −58.1 (2)
C4—C5—C6—C7 0.1 (3) C15—C16—C21—C22 122.71 (18)
C5—C6—C7—C8 −1.2 (3) C17—C16—C21—C23 65.9 (2)
C6—C7—C8—C3 0.2 (3) C15—C16—C21—C23 −113.34 (19)
C6—C7—C8—C12 177.92 (17) C19—C20—C24—C25 65.7 (2)
C4—C3—C8—C7 1.8 (3) C15—C20—C24—C25 −115.96 (19)
N1—C3—C8—C7 −177.25 (16) C19—C20—C24—C26 −59.0 (2)
C4—C3—C8—C12 −175.87 (16) C15—C20—C24—C26 119.31 (18)
N1—C3—C8—C12 5.1 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12···Cl1 1.00 2.91 3.543 (2) 122
C21—H21···Cl1 1.00 2.88 3.6006 (19) 130
C9—H9···O1 1.00 2.63 3.273 (2) 122
C25—H25C···O1 0.98 2.61 3.407 (2) 138
C9—H9···N1 1.00 2.43 2.927 (2) 110
C12—H12···N1 1.00 2.41 2.904 (2) 110
C21—H21···N2 1.00 2.42 2.930 (2) 111
C24—H24···N2 1.00 2.41 2.915 (2) 110
C2—H2A···O1i 0.99 2.36 3.319 (2) 164

Symmetry code: (i) x, y−1, z.

References

  1. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Caputo, C. A., Price, J. T., Jennings, M. C., McDonald, R. & Jones, N. D. (2008). Dalton Trans. pp. 3461–3469. [DOI] [PubMed]
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Gholivand, K. & Mojahed, F. (2005). Z. Anorg. Allg. Chem. 631, 1912–1918.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Gudat, D. (2010). Recent Developments in the Chemistry of N-Heterocyclic Phosphines, edited by R. K. Bansal, pp. 63–102. Berlin: Springer.
  7. Koeller, K. J., Rath, N. P. & Spilling, C. D. (1995). Phosphorus Sulfur Silicon, 103, 171–181.
  8. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  9. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017005825/hb7671sup1.cif

e-73-00735-sup1.cif (931.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017005825/hb7671Isup2.hkl

e-73-00735-Isup2.hkl (501.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017005825/hb7671Isup3.cml

CCDC reference: 1544709

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES