Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Apr 28;73(Pt 5):763–766. doi: 10.1107/S2056989017006077

Crystal structure and Hirshfeld surface analysis of 3-oxours-12-ene-27a,28-dioic acid (quafrinoic acid)

Jean Jules Bankeu Kezetas a,, Stéphanie Dietagoum Madjouka b, Rajesh Kumar c, Muhammad Shaiq Ali c, Bruno Lenta Njakou d, Sammer Yousuf c,*
PMCID: PMC5418801  PMID: 28529793

The title compound, known as quafrinoic acid, is a penta­cyclic triterpene isolated from Nauclea Pobeguinii. The compound is composed of five fused six-membered rings and the mol­ecular conformation is stabilized by intra­molecular C—H⋯O inter­action, forming S6 and S8 rings.

Keywords: crystal structure, penta­cyclic triterpene, quafrinoic acid, Nauclea pobeguiniia, Hirshfeld surface analysis

Abstract

The title compound, C30H44O5, is a penta­cyclic triterpene isolated from the Cameroonian medicinal plant Nauclea Pobeguinii and known as quafrinoic acid. The mol­ecule is composed of five fused six-membered rings, four of which adopt a chair conformation and one a half-chair conformation. Intra­molecular C—H⋯O hydrogen-bond inter­actions exist, which generate S6 and S8 rings. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, linking R 2 2(8) rings into chains running parallel to the a axis; these chains are further connected into layers parallel to the ab plane by C—H⋯O hydrogen bonds. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (79.4%) and O⋯H (20.4%) inter­actions.

Chemical context  

Nauclea is a well-known genus of the Rubiaceae family consisting of 35 species of which ten are distributed in tropical Africa, Asia and Australia (Chen & Taylor, 2011). Several specimens of this genus, including Nauclea pobeguinii, are largely used in traditional medicine in Africa. During the last decade, many studies have been carried out on N. pobeguinii to explore its medicinal potential and promising results have made it an attractive target for researchers. The 80% ethano­lic stem bark extract of N. pobeguinii has been successfully used in clinical trials for the treatment of uncomplicated malaria (Mesia et al., 2012). The plant is also reported to have cytotoxic, anti-cancer (Kuete et al., 2015) and anti-diabetic properties (Agnaniet et al., 2016). The phytochemical investigations of N. pobeguinii have led to the isolation of monoterpene indole alkaloids, triterpenes and phenolic compounds (Kuete et al., 2015; Xu et al., 2012; Zeches et al., 1985). In a continuation of our phytochemical investigation of Cameroonian medicinal plants, we have examined the stem bark of N. pobeguinii and isolated quafrinoic acid. Although the atomic connectivity of quafrinoic acid has already been determined by spectroscopic methods (Ajaiyeoba & Krebs, 2003), we report herein the single crystal X-ray diffraction structure and Hirshfeld surface analysis of quafrinoic acid for the first time.graphic file with name e-73-00763-scheme1.jpg

Structural commentary  

The title compound C30H44O5, is a penta­cyclic triterpene composed of five fused six-membered rings A (C1–C5/C10), B (C5–C10), C (C8–C9/C11–C14), D (C14–C18) and E (C17–C18/C25–C28) (Fig. 1). Rings A, B, D and E each exhibit a chair conformation, whereas ring C has a half-chair conformation. Rings A/B, B/C and C/D are trans fused to each other along the C5—C10, C8—C9, and C13—C14 bonds, respectively. Rings D and E are cis fused along the C17—C18 bond along with the axially oriented carb­oxy­lic acid functionalities at C14 and C17. The bond dimensions are similar to those found in structurally related compounds (Csuk et al., 2015; Awang et al., 2009).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. Dashed lines indicate intra­molecular hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

The mol­ecular conformation is stabilized by intra­molecular hydrogen-bonding inter­actions involving as acceptors the oxygen atoms of the axially oriented carb­oxy­lic group O2/O3/C19 via C7—H7A⋯O3, C9—H9A⋯O3 and C30—H30A⋯O3 hydrogen bonds and forming rings with S(6), S(6) and S(8) graph-set motifs, respectively (Table 1).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3i 0.91 (1) 1.70 (1) 2.6046 (18) 172 (5)
O2—H19A⋯O5ii 0.80 (4) 1.89 (4) 2.6702 (18) 165 (4)
C7—H7A⋯O2 0.99 2.54 3.232 (2) 127
C9—H9A⋯O3 1.00 2.18 3.009 (2) 139
C28—H28B⋯O1iii 0.99 2.49 3.477 (3) 173
C29—H29A⋯O4iv 0.98 2.57 3.497 (3) 158
C30—H30A⋯O3 0.98 2.58 3.221 (3) 123

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Supra­molecular features  

In the crystal, mol­ecules are linked into chains parallel to the a axis through pairs of O—H⋯O hydrogen bonds, forming Inline graphic(8) rings. These chains are further connected into layers parallel to the ab plane by C—H⋯O hydrogen bonds (Table 1; Fig. 2).

Figure 2.

Figure 2

The crystal packing of the title compound viewed down the a axis. Only H atoms involved in hydrogen bonding are shown.

Hirshfeld surface analysis  

An Hirshfeld surface analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) of the title compound was carried out (Fig. 3) to investigate the location of atoms with potential to form hydrogen bonds and the qu­anti­tative ratio of these inter­actions. The analysis of the crystal structure suggests that the most important inter­action is H⋯H contributing 79.4% to the overall crystal packing. The other important inter­action is O⋯H, contributing 20.4% towards the crystal packing. The weakest inter­molecular contact for the cohesion of the structure is O⋯O, found to contribute only 0.4%. The graphical representation of the Hirshfeld surface (Fig. 4) suggests the locations of inter­molecular contacts. These contacts are represented by conventional mapping of d norm on mol­ecular Hirshfeld surfaces as shown in Fig. 3. The H⋯H contribution for the crystal packing is shown as a Hirshfeld surface two-dimensional fingerprint plot with red dots (Wolff et al., 2012). The d e (y axis) and d i (x axis) values are the closest external and inter­nal distances (Å) from a given points on the Hirshfeld surface contacts (Fig. 4).

Figure 3.

Figure 3

d norm mapped on Hirshfeld surface for visualizing the inter-contacts of the title compound. Dashed lines indicate hydrogen bonds.

Figure 4.

Figure 4

Two-dimensional fingerprint plot analysis of (a) all inter­actions, (b) H⋯H contacts, (c) O⋯H contacts and (d) O⋯O contacts. The outline of the full fingerprint plots is shown in grey. d i is the closet inter­nal distance from a given point on the Hirshfeld surface and d e is the closest external contact.

Synthesis and crystallization  

The stem bark of N. pobeguinii (Pobég. ex Pellegr.) Merr. ex E·M.A., Rubiaceae, were collected in March 2015 from Makénéné, Centre Region of Cameroon, identified by Dr Njouonkou André Ledoux and Mr Tacham Walter Ndam, lecturers in botany at the Department of Biological Sciences, Faculty of Science, The University of Bamenda, and compared with voucher specimens formerly kept at the National Herbarium under the registration number (32597/HNC). 7.2 kg of the air-dried and ground stem bark of N. pobeguinii was extracted with MeOH (3 × 20 L) at room temperature and allowed to concentrate under reduced pressure at low temperature to obtain 1000 g of brown crude extract. The extract was subjected to medium pressure liquid column chromatography over silica gel (Merck, 230–400 mesh) eluting with n-hexane, n-hexa­ne/EtOAc, EtOAc and EtOAc/MeOH, in increasing order of polarity to yield quafrinoic acid (25 mg). The purified compound was recrystallized by slow evaporation of a methanol solution at room temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms on methyl, methyl­ene and methine carbon atoms were positioned geometrically with C—H = 0.96 Å (CH3), 0.97 Å (CH2) and 0.93 Å (CH) and constrained to ride on their parent atoms with U iso(H)= 1.2U eq(C) or 1.5U eq(C) for methyl H atoms. The carb­oxy H atoms were located in a difference-Fourier map and refined isotropically, with the O4—H4 bond length constrained to be 0.90 (1) Å.

Table 2. Experimental details.

Crystal data
Chemical formula C30H44O5
M r 484.65
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 8.3465 (2), 10.9783 (3), 14.6583 (4)
β (°) 101.056 (1)
V3) 1318.22 (6)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.64
Crystal size (mm) 0.45 × 0.23 × 0.12
 
Data collection
Diffractometer Bruker SMART APEX CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2009)
T min, T max 0.760, 0.927
No. of measured, independent and observed [I > 2σ(I)] reflections 28696, 5116, 5023
R int 0.042
(sin θ/λ)max−1) 0.618
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.115, 1.06
No. of reflections 5116
No. of parameters 325
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.70, −0.31
Absolute structure Flack, 1983
Absolute structure parameter 0.14 (17)

Computer programs: SMART and SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017006077/rz5213sup1.cif

e-73-00763-sup1.cif (38.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017006077/rz5213Isup2.hkl

e-73-00763-Isup2.hkl (250.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017006077/rz5213Isup3.cml

CCDC reference: 1545425

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

BJKK is very grateful to The World Academy of Sciences (TWAS) and the Inter­national Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Pakistan for their financial and technical support through the ICCBS–TWAS Postdoctoral Fellowship number 3240280476 granted to BKJJ.

supplementary crystallographic information

Crystal data

C30H44O5 F(000) = 528
Mr = 484.65 Dx = 1.221 Mg m3
Monoclinic, P21 Cu Kα radiation, λ = 1.54178 Å
a = 8.3465 (2) Å Cell parameters from 9925 reflections
b = 10.9783 (3) Å θ = 5.1–72.1°
c = 14.6583 (4) Å µ = 0.64 mm1
β = 101.056 (1)° T = 100 K
V = 1318.22 (6) Å3 Block, colourless
Z = 2 0.45 × 0.23 × 0.12 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 5116 independent reflections
Radiation source: fine-focus sealed tube 5023 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.042
ω scans θmax = 72.2°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −10→10
Tmin = 0.760, Tmax = 0.927 k = −12→13
28696 measured reflections l = −18→18

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0718P)2 + 0.4209P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.115 (Δ/σ)max < 0.001
S = 1.06 Δρmax = 0.70 e Å3
5116 reflections Δρmin = −0.31 e Å3
325 parameters Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraints Extinction coefficient: 0.0047 (12)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack, 1983
Secondary atom site location: difference Fourier map Absolute structure parameter: 0.14 (17)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.27554 (19) 0.9227 (2) 0.81577 (14) 0.0587 (6)
O2 0.63334 (15) 0.29733 (12) 0.81088 (9) 0.0213 (3)
O3 0.56617 (14) 0.43709 (13) 0.70046 (8) 0.0232 (3)
O4 1.26493 (17) 0.36149 (16) 0.66220 (11) 0.0376 (4)
O5 1.31424 (15) 0.25278 (16) 0.79245 (10) 0.0328 (3)
C1 0.6083 (2) 0.84362 (18) 0.72071 (13) 0.0250 (4)
H1A 0.6715 0.8743 0.6748 0.030*
H1B 0.5291 0.7829 0.6889 0.030*
C2 0.5145 (2) 0.9494 (2) 0.75258 (15) 0.0315 (4)
H2A 0.5919 1.0146 0.7786 0.038*
H2B 0.4378 0.9833 0.6986 0.038*
C3 0.4206 (2) 0.90781 (18) 0.82544 (14) 0.0295 (4)
C4 0.5182 (2) 0.84228 (17) 0.91042 (13) 0.0235 (4)
C5 0.62587 (19) 0.74263 (16) 0.87525 (12) 0.0190 (3)
H5A 0.5453 0.6818 0.8430 0.023*
C6 0.7330 (2) 0.66974 (17) 0.95315 (12) 0.0217 (4)
H6A 0.8352 0.7148 0.9770 0.026*
H6B 0.6745 0.6572 1.0051 0.026*
C7 0.7722 (2) 0.54683 (17) 0.91361 (11) 0.0206 (3)
H7A 0.6692 0.5010 0.8938 0.025*
H7B 0.8419 0.4994 0.9634 0.025*
C8 0.85976 (19) 0.55753 (17) 0.83033 (11) 0.0186 (3)
C9 0.7771 (2) 0.65618 (17) 0.75961 (11) 0.0192 (3)
H9A 0.6722 0.6185 0.7277 0.023*
C10 0.7266 (2) 0.77963 (16) 0.80027 (12) 0.0204 (4)
C11 0.8786 (2) 0.67108 (18) 0.68322 (14) 0.0281 (4)
H11A 0.8169 0.7212 0.6321 0.034*
H11B 0.9813 0.7144 0.7090 0.034*
C12 0.9178 (2) 0.55000 (19) 0.64540 (13) 0.0262 (4)
H12A 0.9584 0.5508 0.5891 0.031*
C13 0.90136 (19) 0.44199 (17) 0.68303 (11) 0.0195 (3)
C14 0.84932 (18) 0.42886 (17) 0.77766 (11) 0.0175 (3)
C15 0.96004 (19) 0.33334 (16) 0.83675 (11) 0.0171 (3)
H15A 1.0692 0.3697 0.8584 0.021*
H15B 0.9137 0.3141 0.8924 0.021*
C16 0.98026 (19) 0.21453 (16) 0.78546 (12) 0.0185 (3)
H16A 0.8734 0.1728 0.7695 0.022*
H16B 1.0563 0.1601 0.8269 0.022*
C17 1.0464 (2) 0.23782 (16) 0.69610 (12) 0.0194 (4)
C18 0.9318 (2) 0.32589 (17) 0.63186 (12) 0.0211 (4)
H18A 0.9905 0.3507 0.5814 0.025*
C19 0.6708 (2) 0.38454 (17) 0.76152 (11) 0.0174 (3)
C20 1.0395 (2) 0.59073 (18) 0.86730 (14) 0.0258 (4)
H20A 1.0453 0.6693 0.8996 0.039*
H20B 1.0973 0.5964 0.8152 0.039*
H20C 1.0904 0.5277 0.9107 0.039*
C21 0.8701 (2) 0.86653 (17) 0.83604 (14) 0.0254 (4)
H21A 0.9272 0.8856 0.7853 0.038*
H21B 0.9460 0.8273 0.8869 0.038*
H21C 0.8283 0.9419 0.8587 0.038*
C22 0.6152 (2) 0.93770 (19) 0.97522 (14) 0.0301 (4)
H22A 0.5396 0.9967 0.9940 0.045*
H22B 0.6908 0.9801 0.9425 0.045*
H22C 0.6770 0.8972 1.0305 0.045*
C23 0.3981 (2) 0.78061 (19) 0.96218 (14) 0.0283 (4)
H23A 0.3303 0.8426 0.9844 0.042*
H23B 0.4587 0.7351 1.0153 0.042*
H23C 0.3284 0.7246 0.9201 0.042*
C24 1.2189 (2) 0.29000 (17) 0.71987 (12) 0.0206 (3)
C25 0.7705 (2) 0.26347 (19) 0.58354 (13) 0.0248 (4)
H25A 0.7031 0.2461 0.6316 0.030*
C26 0.8008 (3) 0.1421 (2) 0.53560 (14) 0.0326 (5)
H26A 0.8574 0.1613 0.4831 0.039*
C27 0.9097 (2) 0.0580 (2) 0.60201 (14) 0.0307 (4)
H27A 0.9316 −0.0164 0.5682 0.037*
H27B 0.8519 0.0331 0.6520 0.037*
C28 1.0706 (2) 0.11713 (18) 0.64521 (14) 0.0266 (4)
H28A 1.1338 0.1340 0.5959 0.032*
H28B 1.1348 0.0598 0.6900 0.032*
C29 0.6414 (3) 0.0764 (3) 0.49574 (18) 0.0475 (6)
H29A 0.6656 0.0004 0.4659 0.071*
H29B 0.5734 0.1287 0.4497 0.071*
H29C 0.5830 0.0578 0.5460 0.071*
C30 0.6761 (3) 0.3486 (2) 0.51214 (15) 0.0378 (5)
H30A 0.6568 0.4257 0.5420 0.057*
H30B 0.5712 0.3114 0.4847 0.057*
H30C 0.7389 0.3642 0.4633 0.057*
H19A 0.539 (5) 0.281 (4) 0.796 (3) 0.082 (12)*
H4A 1.367 (3) 0.391 (5) 0.680 (4) 0.14 (2)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0238 (8) 0.0760 (14) 0.0769 (12) 0.0147 (8) 0.0113 (8) 0.0335 (11)
O2 0.0138 (5) 0.0251 (7) 0.0263 (6) −0.0035 (5) 0.0067 (4) 0.0021 (5)
O3 0.0123 (5) 0.0291 (7) 0.0266 (6) −0.0014 (5) −0.0003 (4) 0.0041 (5)
O4 0.0185 (6) 0.0464 (10) 0.0495 (9) −0.0092 (6) 0.0106 (6) 0.0124 (7)
O5 0.0139 (6) 0.0527 (9) 0.0318 (7) −0.0003 (6) 0.0041 (5) 0.0018 (6)
C1 0.0204 (8) 0.0245 (9) 0.0283 (9) −0.0002 (7) 0.0004 (7) 0.0056 (7)
C2 0.0255 (9) 0.0282 (11) 0.0386 (10) 0.0046 (8) 0.0002 (8) 0.0076 (8)
C3 0.0225 (9) 0.0230 (10) 0.0414 (10) 0.0048 (7) 0.0024 (8) 0.0016 (8)
C4 0.0178 (8) 0.0217 (9) 0.0303 (9) 0.0001 (7) 0.0030 (7) −0.0035 (7)
C5 0.0146 (7) 0.0187 (8) 0.0229 (8) −0.0023 (6) 0.0019 (6) −0.0014 (6)
C6 0.0226 (8) 0.0214 (9) 0.0206 (8) −0.0003 (7) 0.0029 (7) −0.0018 (7)
C7 0.0209 (8) 0.0211 (9) 0.0191 (7) −0.0016 (7) 0.0026 (6) 0.0017 (7)
C8 0.0143 (7) 0.0198 (8) 0.0212 (8) −0.0002 (6) 0.0020 (6) 0.0025 (7)
C9 0.0162 (7) 0.0204 (9) 0.0210 (8) −0.0015 (6) 0.0034 (6) 0.0041 (7)
C10 0.0163 (7) 0.0171 (9) 0.0273 (8) −0.0006 (6) 0.0026 (6) 0.0029 (7)
C11 0.0308 (9) 0.0240 (10) 0.0328 (10) 0.0003 (8) 0.0141 (8) 0.0095 (7)
C12 0.0259 (9) 0.0295 (10) 0.0265 (9) 0.0002 (8) 0.0137 (7) 0.0041 (8)
C13 0.0124 (7) 0.0265 (9) 0.0199 (8) −0.0019 (7) 0.0042 (6) 0.0025 (7)
C14 0.0103 (7) 0.0217 (8) 0.0202 (7) −0.0022 (6) 0.0021 (5) 0.0028 (7)
C15 0.0118 (7) 0.0209 (8) 0.0186 (7) −0.0014 (6) 0.0028 (6) 0.0021 (6)
C16 0.0134 (7) 0.0200 (9) 0.0226 (8) −0.0007 (6) 0.0043 (6) 0.0025 (7)
C17 0.0136 (7) 0.0224 (9) 0.0231 (8) −0.0024 (6) 0.0057 (6) −0.0021 (7)
C18 0.0157 (7) 0.0294 (10) 0.0192 (8) −0.0032 (7) 0.0058 (6) 0.0013 (7)
C19 0.0123 (7) 0.0225 (9) 0.0186 (7) −0.0009 (6) 0.0059 (6) 0.0000 (6)
C20 0.0160 (8) 0.0222 (9) 0.0369 (10) −0.0025 (6) −0.0006 (7) −0.0020 (7)
C21 0.0189 (8) 0.0196 (9) 0.0371 (10) −0.0039 (7) 0.0040 (7) 0.0023 (7)
C22 0.0266 (9) 0.0245 (10) 0.0382 (10) −0.0022 (8) 0.0036 (8) −0.0081 (8)
C23 0.0249 (9) 0.0262 (10) 0.0355 (10) −0.0009 (8) 0.0101 (7) −0.0057 (8)
C24 0.0156 (7) 0.0243 (9) 0.0237 (8) −0.0002 (7) 0.0082 (6) −0.0025 (7)
C25 0.0173 (8) 0.0331 (10) 0.0228 (8) −0.0050 (7) 0.0010 (6) −0.0005 (7)
C26 0.0323 (10) 0.0416 (12) 0.0255 (9) −0.0099 (9) 0.0094 (8) −0.0086 (9)
C27 0.0333 (10) 0.0301 (11) 0.0316 (10) −0.0093 (9) 0.0137 (8) −0.0097 (8)
C28 0.0243 (9) 0.0261 (10) 0.0317 (10) −0.0007 (7) 0.0109 (7) −0.0041 (8)
C29 0.0463 (13) 0.0494 (15) 0.0411 (12) −0.0124 (12) −0.0062 (10) −0.0105 (11)
C30 0.0314 (10) 0.0439 (13) 0.0355 (11) 0.0079 (9) 0.0003 (8) −0.0029 (9)

Geometric parameters (Å, º)

O1—C3 1.203 (3) C14—C15 1.548 (2)
O2—C19 1.275 (2) C15—C16 1.531 (2)
O2—H19A 0.79 (4) C15—H15A 0.9900
O3—C19 1.264 (2) C15—H15B 0.9900
O4—C24 1.266 (2) C16—C17 1.537 (2)
O4—H4A 0.906 (10) C16—H16A 0.9900
O5—C24 1.268 (2) C16—H16B 0.9900
C1—C2 1.523 (3) C17—C24 1.526 (2)
C1—C10 1.545 (2) C17—C18 1.546 (2)
C1—H1A 0.9900 C17—C28 1.553 (3)
C1—H1B 0.9900 C18—C25 1.555 (2)
C2—C3 1.511 (3) C18—H18A 1.0000
C2—H2A 0.9900 C20—H20A 0.9800
C2—H2B 0.9900 C20—H20B 0.9800
C3—C4 1.531 (3) C20—H20C 0.9800
C4—C23 1.526 (3) C21—H21A 0.9800
C4—C22 1.536 (3) C21—H21B 0.9800
C4—C5 1.565 (2) C21—H21C 0.9800
C5—C6 1.534 (2) C22—H22A 0.9800
C5—C10 1.560 (2) C22—H22B 0.9800
C5—H5A 1.0000 C22—H22C 0.9800
C6—C7 1.529 (2) C23—H23A 0.9800
C6—H6A 0.9900 C23—H23B 0.9800
C6—H6B 0.9900 C23—H23C 0.9800
C7—C8 1.543 (2) C25—C30 1.508 (3)
C7—H7A 0.9900 C25—C26 1.550 (3)
C7—H7B 0.9900 C25—H25A 1.0000
C8—C20 1.538 (2) C26—C27 1.512 (3)
C8—C9 1.565 (2) C26—C29 1.528 (3)
C8—C14 1.604 (2) C26—H26A 1.0000
C9—C11 1.537 (2) C27—C28 1.517 (3)
C9—C10 1.571 (2) C27—H27A 0.9900
C9—H9A 1.0000 C27—H27B 0.9900
C10—C21 1.543 (2) C28—H28A 0.9900
C11—C12 1.501 (3) C28—H28B 0.9900
C11—H11A 0.9900 C29—H29A 0.9800
C11—H11B 0.9900 C29—H29B 0.9800
C12—C13 1.326 (3) C29—H29C 0.9800
C12—H12A 0.9500 C30—H30A 0.9800
C13—C18 1.525 (3) C30—H30B 0.9800
C13—C14 1.538 (2) C30—H30C 0.9800
C14—C19 1.542 (2)
C19—O2—H19A 111 (3) C15—C16—H16A 109.3
C24—O4—H4A 115 (3) C17—C16—H16A 109.3
C2—C1—C10 113.99 (16) C15—C16—H16B 109.3
C2—C1—H1A 108.8 C17—C16—H16B 109.3
C10—C1—H1A 108.8 H16A—C16—H16B 108.0
C2—C1—H1B 108.8 C24—C17—C16 110.18 (13)
C10—C1—H1B 108.8 C24—C17—C18 110.52 (14)
H1A—C1—H1B 107.6 C16—C17—C18 109.97 (13)
C3—C2—C1 110.69 (17) C24—C17—C28 103.06 (13)
C3—C2—H2A 109.5 C16—C17—C28 111.63 (15)
C1—C2—H2A 109.5 C18—C17—C28 111.31 (14)
C3—C2—H2B 109.5 C13—C18—C17 111.42 (13)
C1—C2—H2B 109.5 C13—C18—C25 112.39 (14)
H2A—C2—H2B 108.1 C17—C18—C25 112.48 (15)
O1—C3—C2 121.49 (18) C13—C18—H18A 106.7
O1—C3—C4 121.75 (19) C17—C18—H18A 106.7
C2—C3—C4 116.73 (16) C25—C18—H18A 106.7
C23—C4—C3 108.39 (15) O3—C19—O2 122.26 (15)
C23—C4—C22 108.26 (15) O3—C19—C14 118.73 (15)
C3—C4—C22 108.53 (16) O2—C19—C14 119.00 (15)
C23—C4—C5 109.09 (15) C8—C20—H20A 109.5
C3—C4—C5 108.06 (15) C8—C20—H20B 109.5
C22—C4—C5 114.37 (14) H20A—C20—H20B 109.5
C6—C5—C10 110.16 (13) C8—C20—H20C 109.5
C6—C5—C4 114.15 (14) H20A—C20—H20C 109.5
C10—C5—C4 118.11 (14) H20B—C20—H20C 109.5
C6—C5—H5A 104.2 C10—C21—H21A 109.5
C10—C5—H5A 104.2 C10—C21—H21B 109.5
C4—C5—H5A 104.2 H21A—C21—H21B 109.5
C7—C6—C5 108.36 (13) C10—C21—H21C 109.5
C7—C6—H6A 110.0 H21A—C21—H21C 109.5
C5—C6—H6A 110.0 H21B—C21—H21C 109.5
C7—C6—H6B 110.0 C4—C22—H22A 109.5
C5—C6—H6B 110.0 C4—C22—H22B 109.5
H6A—C6—H6B 108.4 H22A—C22—H22B 109.5
C6—C7—C8 113.65 (15) C4—C22—H22C 109.5
C6—C7—H7A 108.8 H22A—C22—H22C 109.5
C8—C7—H7A 108.8 H22B—C22—H22C 109.5
C6—C7—H7B 108.8 C4—C23—H23A 109.5
C8—C7—H7B 108.8 C4—C23—H23B 109.5
H7A—C7—H7B 107.7 H23A—C23—H23B 109.5
C20—C8—C7 108.50 (14) C4—C23—H23C 109.5
C20—C8—C9 110.22 (14) H23A—C23—H23C 109.5
C7—C8—C9 111.18 (13) H23B—C23—H23C 109.5
C20—C8—C14 109.73 (14) O4—C24—O5 122.53 (16)
C7—C8—C14 108.88 (14) O4—C24—C17 118.30 (15)
C9—C8—C14 108.31 (12) O5—C24—C17 118.91 (15)
C11—C9—C8 108.79 (14) C30—C25—C26 109.11 (16)
C11—C9—C10 114.23 (15) C30—C25—C18 109.54 (17)
C8—C9—C10 117.53 (13) C26—C25—C18 112.50 (15)
C11—C9—H9A 105.0 C30—C25—H25A 108.5
C8—C9—H9A 105.0 C26—C25—H25A 108.5
C10—C9—H9A 105.0 C18—C25—H25A 108.5
C21—C10—C1 108.51 (14) C27—C26—C29 109.2 (2)
C21—C10—C5 114.20 (14) C27—C26—C25 111.32 (15)
C1—C10—C5 107.32 (13) C29—C26—C25 111.93 (19)
C21—C10—C9 114.51 (14) C27—C26—H26A 108.1
C1—C10—C9 106.57 (14) C29—C26—H26A 108.1
C5—C10—C9 105.25 (13) C25—C26—H26A 108.1
C12—C11—C9 111.40 (15) C26—C27—C28 112.44 (17)
C12—C11—H11A 109.3 C26—C27—H27A 109.1
C9—C11—H11A 109.3 C28—C27—H27A 109.1
C12—C11—H11B 109.3 C26—C27—H27B 109.1
C9—C11—H11B 109.3 C28—C27—H27B 109.1
H11A—C11—H11B 108.0 H27A—C27—H27B 107.8
C13—C12—C11 126.23 (15) C27—C28—C17 112.29 (15)
C13—C12—H12A 116.9 C27—C28—H28A 109.1
C11—C12—H12A 116.9 C17—C28—H28A 109.1
C12—C13—C18 120.17 (15) C27—C28—H28B 109.1
C12—C13—C14 121.93 (17) C17—C28—H28B 109.1
C18—C13—C14 117.89 (15) H28A—C28—H28B 107.9
C13—C14—C19 108.85 (13) C26—C29—H29A 109.5
C13—C14—C15 109.06 (13) C26—C29—H29B 109.5
C19—C14—C15 109.13 (14) H29A—C29—H29B 109.5
C13—C14—C8 110.66 (14) C26—C29—H29C 109.5
C19—C14—C8 108.26 (13) H29A—C29—H29C 109.5
C15—C14—C8 110.83 (12) H29B—C29—H29C 109.5
C16—C15—C14 114.36 (13) C25—C30—H30A 109.5
C16—C15—H15A 108.7 C25—C30—H30B 109.5
C14—C15—H15A 108.7 H30A—C30—H30B 109.5
C16—C15—H15B 108.7 C25—C30—H30C 109.5
C14—C15—H15B 108.7 H30A—C30—H30C 109.5
H15A—C15—H15B 107.6 H30B—C30—H30C 109.5
C15—C16—C17 111.60 (14)
C10—C1—C2—C3 −56.5 (2) C20—C8—C14—C13 −73.60 (17)
C1—C2—C3—O1 −124.2 (2) C7—C8—C14—C13 167.79 (13)
C1—C2—C3—C4 53.9 (2) C9—C8—C14—C13 46.77 (16)
O1—C3—C4—C23 12.1 (3) C20—C8—C14—C19 167.19 (14)
C2—C3—C4—C23 −165.95 (17) C7—C8—C14—C19 48.58 (16)
O1—C3—C4—C22 −105.2 (2) C9—C8—C14—C19 −72.45 (15)
C2—C3—C4—C22 76.7 (2) C20—C8—C14—C15 47.54 (17)
O1—C3—C4—C5 130.2 (2) C7—C8—C14—C15 −71.08 (15)
C2—C3—C4—C5 −47.9 (2) C9—C8—C14—C15 167.90 (12)
C23—C4—C5—C6 −63.04 (19) C13—C14—C15—C16 −48.13 (18)
C3—C4—C5—C6 179.32 (15) C19—C14—C15—C16 70.66 (16)
C22—C4—C5—C6 58.3 (2) C8—C14—C15—C16 −170.20 (12)
C23—C4—C5—C10 165.07 (15) C14—C15—C16—C17 56.47 (17)
C3—C4—C5—C10 47.43 (19) C15—C16—C17—C24 64.84 (18)
C22—C4—C5—C10 −73.5 (2) C15—C16—C17—C18 −57.23 (17)
C10—C5—C6—C7 −68.31 (17) C15—C16—C17—C28 178.72 (14)
C4—C5—C6—C7 156.07 (14) C12—C13—C18—C17 130.96 (17)
C5—C6—C7—C8 58.19 (18) C14—C13—C18—C17 −49.90 (18)
C6—C7—C8—C20 76.36 (18) C12—C13—C18—C25 −101.75 (19)
C6—C7—C8—C9 −45.00 (19) C14—C13—C18—C25 77.39 (18)
C6—C7—C8—C14 −164.25 (13) C24—C17—C18—C13 −68.80 (17)
C20—C8—C9—C11 54.48 (19) C16—C17—C18—C13 53.07 (18)
C7—C8—C9—C11 174.83 (15) C28—C17—C18—C13 177.31 (13)
C14—C8—C9—C11 −65.58 (17) C24—C17—C18—C25 163.96 (13)
C20—C8—C9—C10 −77.29 (18) C16—C17—C18—C25 −74.17 (17)
C7—C8—C9—C10 43.06 (19) C28—C17—C18—C25 50.07 (18)
C14—C8—C9—C10 162.65 (13) C13—C14—C19—O3 −47.5 (2)
C2—C1—C10—C21 −70.20 (19) C15—C14—C19—O3 −166.42 (15)
C2—C1—C10—C5 53.7 (2) C8—C14—C19—O3 72.86 (18)
C2—C1—C10—C9 166.01 (15) C13—C14—C19—O2 133.37 (16)
C6—C5—C10—C21 −63.99 (19) C15—C14—C19—O2 14.4 (2)
C4—C5—C10—C21 69.65 (19) C8—C14—C19—O2 −106.28 (17)
C6—C5—C10—C1 175.69 (14) C16—C17—C24—O4 −149.64 (17)
C4—C5—C10—C1 −50.67 (19) C18—C17—C24—O4 −27.9 (2)
C6—C5—C10—C9 62.44 (16) C28—C17—C24—O4 91.1 (2)
C4—C5—C10—C9 −163.91 (14) C16—C17—C24—O5 36.0 (2)
C11—C9—C10—C21 −53.9 (2) C18—C17—C24—O5 157.70 (16)
C8—C9—C10—C21 75.37 (18) C28—C17—C24—O5 −83.28 (19)
C11—C9—C10—C1 66.10 (18) C13—C18—C25—C30 61.30 (19)
C8—C9—C10—C1 −164.65 (14) C17—C18—C25—C30 −171.98 (15)
C11—C9—C10—C5 179.87 (14) C13—C18—C25—C26 −177.17 (14)
C8—C9—C10—C5 −50.88 (17) C17—C18—C25—C26 −50.45 (19)
C8—C9—C11—C12 48.4 (2) C30—C25—C26—C27 174.28 (17)
C10—C9—C11—C12 −178.13 (15) C18—C25—C26—C27 52.5 (2)
C9—C11—C12—C13 −13.7 (3) C30—C25—C26—C29 −63.2 (2)
C11—C12—C13—C18 174.45 (18) C18—C25—C26—C29 175.04 (18)
C11—C12—C13—C14 −4.7 (3) C29—C26—C27—C28 −179.62 (17)
C12—C13—C14—C19 106.02 (19) C25—C26—C27—C28 −55.5 (2)
C18—C13—C14—C19 −73.11 (18) C26—C27—C28—C17 56.3 (2)
C12—C13—C14—C15 −135.01 (17) C24—C17—C28—C27 −171.43 (15)
C18—C13—C14—C15 45.86 (18) C16—C17—C28—C27 70.3 (2)
C12—C13—C14—C8 −12.8 (2) C18—C17—C28—C27 −53.0 (2)
C18—C13—C14—C8 168.04 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H4A···O3i 0.91 (1) 1.70 (1) 2.6046 (18) 172 (5)
O2—H19A···O5ii 0.80 (4) 1.89 (4) 2.6702 (18) 165 (4)
C7—H7A···O2 0.99 2.54 3.232 (2) 127
C9—H9A···O3 1.00 2.18 3.009 (2) 139
C28—H28B···O1iii 0.99 2.49 3.477 (3) 173
C29—H29A···O4iv 0.98 2.57 3.497 (3) 158
C30—H30A···O3 0.98 2.58 3.221 (3) 123

Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) x+1, y−1, z; (iv) −x+2, y−1/2, −z+1.

References

  1. Agnaniet, H., Mbot, E. J., Keita, O., Fehrentz, J.-A., Ankli, A., Gallud, A., Garcia, M., Gary-Bobo, M., Lebibi, J., Cresteil, T. & Menut, C. (2016). BMC Complement. Altern. Med. 16, 71–78. [DOI] [PMC free article] [PubMed]
  2. Ajaiyeoba, E. O. & Krebs, H. C. (2003). Nigerian J. Nat. Prod. Med. 7, 39–41.
  3. Awang, K., Abdullah, N. H., Thomas, N. F. & Ng, S. W. (2009). Acta Cryst. E65, o2113. [DOI] [PMC free article] [PubMed]
  4. Bruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chen, T. & Taylor, C. M. (2011). Nauclea linnaeus, sp. P1, in Flora of China, edited by Z.-Y. Wu, P. H. Raven & D.-Y. Hong, Vol. 19, p. 249. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press.
  6. Csuk, R., Barthel-Niesen, N., Ströhl, D., Kluge, R., Wagner, C. & Al-Harrasi, A. (2015). Tetrahedron, 71, 2025–2034.
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  9. Kuete, V., Sandjo, L. P., Mbaveng, A. T., Seukep, J. A., Ngadjui, B. T. & Efferth, T. (2015). BMC Complementary Alternative Med. 309, 1–9. [DOI] [PMC free article] [PubMed]
  10. Mesia, K., Tona, L., Mampunza, M. M., Ntamabyaliro, N., Muanda, T., Muyembe, T., Cimanga, K., Totté, J., Mets, T., Pieters, L. & Vlietinck, A. J. (2012). Planta Med. 78, 211–218. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  15. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.
  16. Xu, Y.-J., Foubert, K., Dhooghe, L., Lemière, F., Cimanga, K., Mesia, K., Apers, S. & Pieters, L. (2012). Phytochemistry Lett. 5, 316–319.
  17. Zeches, M., Richard, B., Gueye-M’Bahia, L., Le Men-Olivier, L. & Delaude, C. (1985). J. Nat. Prod. 48, 42–46.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017006077/rz5213sup1.cif

e-73-00763-sup1.cif (38.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017006077/rz5213Isup2.hkl

e-73-00763-Isup2.hkl (250.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017006077/rz5213Isup3.cml

CCDC reference: 1545425

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES