Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Apr 28;73(Pt 5):767–770. doi: 10.1107/S2056989017006120

Crystal structures of two alkaline earth (M = Ba and Sr) dimanganese(II) iron(III) tris­(orthophosphates)

Ghaleb Alhakmi a,*, Abderrazzak Assani a, Mohamed Saadi a, Lahcen El Ammari a
PMCID: PMC5418802  PMID: 28529794

The two orthophosphates BaMn2Fe(PO4)3 and SrMn2Fe(PO4)3 are isotypic and resemble an alluaudite-like structure. The chains characterizing the alluaudite structure are built up from edge-sharing [MnO6] and [FeO6] octa­hedra linked by PO4 tetra­hedra.

Keywords: crystal structure, BaMn2Fe(PO4)3, SrMn2Fe(PO4)3, transition metal, phosphates, solid-state reaction synthesis

Abstract

Two new orthophosphates, BaMn2Fe(PO4)3 [barium dimanganese(II) iron(III) tris­(orthophosphate)] and SrMn2Fe(PO4)3 [strontium dimanganese(II) iron(III) tris­(orthophosphate)], were synthesized by solid-state reactions. They are isotypic and crystallize in the ortho­rhom­bic system with space group type Pbcn. Their crystal structures comprise infinite zigzag chains of edge-sharing FeO6 octa­hedra (point group symmetry .2.) and Mn2O10 double octa­hedra running parallel to [001], linked by two types of PO4 tetra­hedra. The so-formed three-dimensional framework delineates channels running along [001], in which the alkaline earth cations (site symmetry .2.) are located within a neighbourhood of eight O atoms.

Chemical context  

Considerable attention has been devoted to the preparation of new inorganic materials with open-framework structures (Rao et al., 2001; Bouzidi et al., 2015) due to their structural diversity covering a wide range of chemical compositions (Zhou et al., 2002). In particular, transition-metal-based open-framework phosphates represent a highly attractive class of materials in industrial processes. In fact, their special framework structures lead to inter­esting properties that depend not only on the inclusion guest in the pores, but also on the chosen transition metal (Durio et al., 2002; López et al., 2004; Férey et al., 2005). Typical examples are ion-exchangers (Jignasa et al., 2006; Kullberg & Clearfield, 1981) and compounds with special magnetic (Chouaibi et al., 2001; Ferdov et al., 2008) and catal­ytic properties (Weng et al., 2009).

In this context, our group focuses on the synthesis and characterization of new transition-metal phosphates crystallizing either in alluaudite- (Moore, 1971) or α-CrPO4-type structures (Attfield et al., 1988). In attempts to obtain new compounds belonging to the latter structure type, we have synthesized and structurally characterized several new phosphates, including those with oxidation states of both +II and +III for manganese. These compounds have the general formula MMnIIIMn2 II(PO4)3 (M = Pb, Sr, Ba) (Alhakmi et al., 2013a ,b ; Assani et al., 2013) and adopt the α-CrPO4 structure type. Recently, the phosphates Na2Co2Fe(PO4)3 (Bouraima et al., 2015) and Na1.67Zn1.67Fe1.33(PO4)3 (Khmiyas et al., 2015) with an alluaudite-like structure were also reported. As a continuation in this regard, we have now extended our investigations to the quaternary system MO/MnO/Fe2O3/P2O5, where M is a divalent cation. The present work deals with the synthesis and the crystal structures of two new isotypic alkaline earth manganese iron phosphates, namely, BaMn2Fe(PO4)3 and SrMn2Fe(PO4)3. Their structures show a similarity with that of AM 4(PO4)3 phosphates where A is a monovalent cation and M a divalent cation (Daidouh et al., 1999; Assaaoudi et al., 2006).

Structural commentary  

The principal building units in the crystal structures of both phosphates are distorted FeO6 and MnO6 octa­hedra, PO4 tetra­hedra and Ba2+ or Sr2+ cations as shown in Figs. 1 and 2. In each structure, two MnO6 octa­hedra are linked together by a common edge to give a Mn2O10 dimer to which FeO6 octa­hedra (point group symmetry .2.) are alternately connected on both sides. In this way, infinite zigzag chains parallel to [001] are formed (Fig. 3). Adjacent chains are linked together by sharing corners with two types of PO4 tetra­hedra, forming a layer-like arrangement parallel to (010) as shown in Fig. 4. Such layers are stacked along [010] to form a three-dimensional framework (Fig. 5) with two types of channels running parallel to [001] in which the alkaline earth cations are located on a twofold rotation axis. They are coordinated by eight oxygen atoms (Figs. 1 and 6), with bond lengths ranging from 2.6803 (10) to 2.8722 (11) Å for the BaO8 polyhedron and of 2.6020 (9) to 2.7358 (11) Å for the SrO8 polyhedron.

Figure 1.

Figure 1

The principal building units in the structure of BaMn2Fe(PO4)3. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, −y + 1, z + Inline graphic; (ii) −x + Inline graphic, −y + Inline graphic, −z + 2; (iii) x, y, z + 1; (iv) −x + Inline graphic, −y + Inline graphic, −z + 1; (v) −x + 1, y, −z + Inline graphic; (vi) x, y, z − 1; (vii) −x + 1, y, −z + Inline graphic; (viii) x − Inline graphic, −y + Inline graphic, z − Inline graphic; (ix) −x + 1, −y + 1, −z + 1; (x) x, −y + 1, z − Inline graphic; (xi) −x + 2, y, −z + Inline graphic; (xii) −x + 2, −y + 1, −z + 1.]

Figure 2.

Figure 2

The principal building units in the structure of SrMn2Fe(PO4)3. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, −y + 1, z + Inline graphic; (ii) −x + Inline graphic, −y + Inline graphic, −z + 2; (iii) x, y, z + 1; (iv) −x + Inline graphic, −y + Inline graphic, −z + 1; (v) −x + 1, y, −z + Inline graphic; (vi) x, y, z − 1; (vii) −x + 1, y, −z + Inline graphic; (viii) x − Inline graphic, −y + Inline graphic, z − Inline graphic; (ix) −x + 1, −y + 1, −z + 1; (x) x, −y + 1, z − Inline graphic; (xi) −x + 2, y, −z + Inline graphic; (xii) −x + 2, −y + 1, −z + 1.]

Figure 3.

Figure 3

Edge-sharing [FeO6] octa­hedra and Mn2O10 dimers forming an infinite zigzag chain running parallel to [001]. Data are from BaMn2Fe(PO4)3.

Figure 4.

Figure 4

A layer perpendicular to (010), resulting from the connection of metal oxide chains through PO4 tetra­hedra. Data are from BaMn2Fe(PO4)3.

Figure 5.

Figure 5

A view of stacked layers along [010]. Data are from BaMn2Fe(PO4)3.

Figure 6.

Figure 6

Polyhedral representation of the BaMn2Fe(PO4)3 structure showing Ba2+ cations situated in channels running along [001].

Bond-valence-sum calculations (Brown & Altermatt, 1985) are in good agreement with the expected values for alkaline earth, manganese(II) and iron(III) cations and the phos­phorus(V) atom. BaMn2Fe(PO4)3 (values in valence units): Ba2+ 2.10; Mn2+ 2.00; Fe3+ 3.12; PV 4.94. SrMn2Fe(PO4)3: Sr2+ 1.80; Mn2+ 2.07; Fe3+ 3.18; PV 5.00.

Database survey  

A comparison between the structures of the title compounds and those of other phosphates such as the AM 4(PO4)3 compounds (A = monovalent cation and M = divalent cation) (Im et al., 2014), reveals that all these compounds crystallize with ortho­rhom­bic symmetry and nearly the same unit-cell parameters despite the differences between their chemical formulae and space groups. In order to give an illustrative picture of the similarity between these two formula types, we can write the general formula of AM 4(PO4)3 compounds as follows: M2+(A + M 2+)M 2 2+(PO4)3 and that of the title compounds as M2+Fe3+Mn2 2+(PO4)3. The principal structures of the title compounds and that of the AM 4(PO4)3 compounds are formed by stacking of the same infinite zigzag chains of edge-sharing octa­hedra. Furthermore, these structures are characterized by the presence of two types of channels in which the large cations are located.

Synthesis and crystallization  

Single crystals of the title compounds were isolated as a result of solid-state reactions. Stoichiometric amounts of alkaline earth (M = Ba, Sr), manganese, iron and phosphate precursors in a molar ratio M:Mn:Fe:P = 1:2:1:3, were dissolved in 40 ml water that was placed into a 100 ml capacity pyrex glass beaker. The mixture was stirred at room temperature for 20 h and was evaporated under stirring at 363 K until dryness. The obtained black powder was ground in an agate mortar and pre-heated at 573 K in a platinum crucible for 24 h to eliminate gaseous materials. Subsequently, the resulting residue was reground and melted for 30 min at 1293 K, followed by slow cooling down to 1093 K at a rate 5K h−1 and a rapid cooling to room temperature by switching off the furnace. In the case of the BaO–MnO–Fe2O3–P2O5 system, the reaction product consisted of two types of crystals, viz. orange crystals of the title compound, BaMn2Fe(PO4)3, and dark-violet crystals that were identified to be another new phase. In the case of the SrO–MnO–Fe2O3–P2O5 system, the reaction product contained dark-brown crystals corresponding to the title compound, SrMn2Fe(PO4)3.

Refinement  

Crystal data, data collection and structure refinement details for the two compounds are summarized in Table 1. For BaMn2Fe(PO4)3, the maximum and minimum remaining electron densities are located 0.60 and 0.42 Å from atom Ba1. For SrMn2Fe(PO4)3, they are 0.58 and 0.31 Å from Sr1.

Table 1. Experimental details.

  (I) (II)
Crystal data
Chemical formula BaMn2Fe(PO4)3 SrMn2Fe(PO4)3
M r 587.98 538.25
Crystal system, space group Orthorhombic, P b c n Orthorhombic, P b c n
Temperature (K) 296 296
a, b, c (Å) 6.5899 (2), 17.6467 (4), 8.5106 (2) 6.4304 (3), 17.8462 (7), 8.4906 (3)
V3) 989.70 (4) 974.37 (7)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 8.41 10.00
Crystal size (mm) 0.32 × 0.25 × 0.22 0.30 × 0.27 × 0.23
 
Data collection
Diffractometer Bruker X8 APEX Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.596, 0.748 0.404, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 29422, 3088, 2731 23889, 2843, 2564
R int 0.033 0.031
(sin θ/λ)max−1) 0.907 0.887
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.018, 0.044, 1.05 0.021, 0.048, 1.08
No. of reflections 3088 2843
No. of parameters 89 89
Δρmax, Δρmin (e Å−3) 1.29, −1.11 1.19, −0.81

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXT2014 (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989017006120/wm5384sup1.cif

e-73-00767-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017006120/wm5384Isup2.hkl

e-73-00767-Isup2.hkl (247.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989017006120/wm5384IIsup3.hkl

e-73-00767-IIsup3.hkl (227.7KB, hkl)

CCDC references: 1545505, 1545504

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University in Rabat, Morocco, for financial support.

supplementary crystallographic information

(I) Barium dimanganese(II) iron(III) tris(orthophosphate). Crystal data

BaMn2Fe(PO4)3 Dx = 3.946 Mg m3
Mr = 587.98 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbcn Cell parameters from 3088 reflections
a = 6.5899 (2) Å θ = 3.3–40.1°
b = 17.6467 (4) Å µ = 8.41 mm1
c = 8.5106 (2) Å T = 296 K
V = 989.70 (4) Å3 Block, orange
Z = 4 0.32 × 0.25 × 0.22 mm
F(000) = 1092

(I) Barium dimanganese(II) iron(III) tris(orthophosphate). Data collection

Bruker X8 APEX diffractometer 3088 independent reflections
Radiation source: fine-focus sealed tube 2731 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
φ and ω scans θmax = 40.1°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −8→11
Tmin = 0.596, Tmax = 0.748 k = −31→32
29422 measured reflections l = −15→15

(I) Barium dimanganese(II) iron(III) tris(orthophosphate). Refinement

Refinement on F2 0 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0178P)2 + 1.2088P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.018 (Δ/σ)max = 0.002
wR(F2) = 0.044 Δρmax = 1.29 e Å3
S = 1.05 Δρmin = −1.11 e Å3
3088 reflections Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
89 parameters Extinction coefficient: 0.00278 (15)

(I) Barium dimanganese(II) iron(III) tris(orthophosphate). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(I) Barium dimanganese(II) iron(III) tris(orthophosphate). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ba1 0.5000 0.44269 (2) 0.7500 0.01037 (3)
Fe1 1.0000 0.31799 (2) 0.7500 0.00461 (4)
Mn1 0.83899 (3) 0.36570 (2) 0.39874 (2) 0.00647 (4)
P1 0.83270 (5) 0.17935 (2) 0.53771 (3) 0.00490 (5)
P2 1.0000 0.47123 (2) 0.7500 0.00513 (7)
O1 1.01958 (15) 0.12822 (6) 0.55338 (13) 0.01186 (16)
O2 0.66250 (15) 0.15480 (5) 0.64868 (11) 0.00865 (14)
O3 0.76365 (15) 0.17592 (5) 0.36487 (10) 0.00794 (14)
O4 0.88706 (16) 0.26335 (5) 0.57277 (11) 0.01031 (15)
O5 0.89269 (15) 0.41422 (5) 0.63609 (10) 0.00656 (13)
O6 0.83805 (16) 0.51729 (5) 0.83211 (12) 0.00988 (15)

(I) Barium dimanganese(II) iron(III) tris(orthophosphate). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ba1 0.00562 (5) 0.01428 (5) 0.01119 (5) 0.000 −0.00082 (3) 0.000
Fe1 0.00537 (9) 0.00435 (8) 0.00411 (8) 0.000 0.00015 (7) 0.000
Mn1 0.00598 (7) 0.00785 (6) 0.00559 (7) −0.00021 (5) 0.00041 (6) 0.00013 (5)
P1 0.00360 (11) 0.00666 (10) 0.00443 (10) −0.00050 (9) −0.00036 (9) −0.00071 (8)
P2 0.00571 (17) 0.00355 (13) 0.00611 (15) 0.000 0.00000 (13) 0.000
O1 0.0058 (4) 0.0170 (4) 0.0128 (4) 0.0047 (3) −0.0016 (3) −0.0004 (3)
O2 0.0064 (3) 0.0126 (3) 0.0070 (3) −0.0017 (3) 0.0007 (3) 0.0021 (3)
O3 0.0066 (4) 0.0127 (3) 0.0045 (3) 0.0002 (3) −0.0018 (3) −0.0017 (3)
O4 0.0136 (4) 0.0087 (3) 0.0086 (3) −0.0047 (3) −0.0002 (3) −0.0028 (3)
O5 0.0084 (3) 0.0058 (3) 0.0055 (3) −0.0007 (3) −0.0009 (3) −0.0003 (2)
O6 0.0091 (4) 0.0071 (3) 0.0134 (4) 0.0017 (3) 0.0011 (3) −0.0031 (3)

(I) Barium dimanganese(II) iron(III) tris(orthophosphate). Geometric parameters (Å, º)

Ba1—O6 2.6803 (10) Mn1—O6vi 2.1413 (9)
Ba1—O6i 2.6803 (10) Mn1—O1ii 2.1466 (10)
Ba1—O3ii 2.7861 (9) Mn1—O2vii 2.1587 (9)
Ba1—O3iii 2.7861 (9) Mn1—O2v 2.1997 (10)
Ba1—O5 2.8087 (10) Mn1—O5 2.2223 (9)
Ba1—O5i 2.8087 (10) Mn1—O4 2.3572 (10)
Ba1—O1ii 2.8722 (11) P1—O2 1.5289 (10)
Ba1—O1iii 2.8722 (11) P1—O1 1.5325 (10)
Fe1—O4 1.9387 (9) P1—O3 1.5409 (9)
Fe1—O4iv 1.9387 (9) P1—O4 1.5540 (9)
Fe1—O3v 1.9965 (9) P2—O6 1.5126 (10)
Fe1—O3iii 1.9965 (9) P2—O6iv 1.5126 (10)
Fe1—O5iv 2.0792 (9) P2—O5 1.5659 (9)
Fe1—O5 2.0793 (9) P2—O5iv 1.5660 (9)
O6—Ba1—O6i 121.17 (4) O4iv—Fe1—O5iv 85.00 (4)
O6—Ba1—O3ii 157.68 (3) O3v—Fe1—O5iv 83.59 (4)
O6i—Ba1—O3ii 79.21 (3) O3iii—Fe1—O5iv 91.36 (4)
O6—Ba1—O3iii 79.21 (3) O4—Fe1—O5 85.00 (4)
O6i—Ba1—O3iii 157.68 (3) O4iv—Fe1—O5 154.09 (4)
O3ii—Ba1—O3iii 82.60 (4) O3v—Fe1—O5 91.36 (4)
O6—Ba1—O5 53.99 (3) O3iii—Fe1—O5 83.59 (4)
O6i—Ba1—O5 139.79 (3) O5iv—Fe1—O5 70.50 (5)
O3ii—Ba1—O5 105.04 (3) O6vi—Mn1—O1ii 89.96 (4)
O3iii—Ba1—O5 58.11 (3) O6vi—Mn1—O2vii 84.29 (4)
O6—Ba1—O5i 139.79 (3) O1ii—Mn1—O2vii 101.01 (4)
O6i—Ba1—O5i 53.99 (3) O6vi—Mn1—O2v 96.48 (4)
O3ii—Ba1—O5i 58.11 (3) O1ii—Mn1—O2v 173.39 (4)
O3iii—Ba1—O5i 105.04 (3) O2vii—Mn1—O2v 78.23 (4)
O5—Ba1—O5i 159.39 (3) O6vi—Mn1—O5 82.51 (4)
O6—Ba1—O1ii 114.27 (3) O1ii—Mn1—O5 87.96 (4)
O6i—Ba1—O1ii 90.97 (3) O2vii—Mn1—O5 164.03 (4)
O3ii—Ba1—O1ii 51.86 (3) O2v—Mn1—O5 94.35 (4)
O3iii—Ba1—O1ii 87.88 (3) O6vi—Mn1—O4 154.91 (4)
O5—Ba1—O1ii 64.56 (3) O1ii—Mn1—O4 92.91 (4)
O5i—Ba1—O1ii 105.89 (3) O2vii—Mn1—O4 119.45 (3)
O6—Ba1—O1iii 90.97 (3) O2v—Mn1—O4 81.90 (4)
O6i—Ba1—O1iii 114.27 (3) O5—Mn1—O4 72.70 (3)
O3ii—Ba1—O1iii 87.88 (3) O2—P1—O1 111.65 (6)
O3iii—Ba1—O1iii 51.86 (3) O2—P1—O3 111.22 (5)
O5—Ba1—O1iii 105.89 (3) O1—P1—O3 107.29 (6)
O5i—Ba1—O1iii 64.55 (3) O2—P1—O4 108.71 (5)
O1ii—Ba1—O1iii 128.34 (4) O1—P1—O4 111.08 (6)
O4—Fe1—O4iv 120.35 (6) O3—P1—O4 106.79 (5)
O4—Fe1—O3v 88.85 (4) O6—P2—O6iv 115.00 (8)
O4iv—Fe1—O3v 94.22 (4) O6—P2—O5 108.22 (5)
O4—Fe1—O3iii 94.22 (4) O6iv—P2—O5 112.20 (5)
O4iv—Fe1—O3iii 88.85 (4) O6—P2—O5iv 112.20 (5)
O3v—Fe1—O3iii 173.83 (5) O6iv—P2—O5iv 108.22 (5)
O4—Fe1—O5iv 154.09 (4) O5—P2—O5iv 100.05 (7)

Symmetry codes: (i) −x+1, y, −z+3/2; (ii) x−1/2, −y+1/2, −z+1; (iii) −x+3/2, −y+1/2, z+1/2; (iv) −x+2, y, −z+3/2; (v) x+1/2, −y+1/2, −z+1; (vi) x, −y+1, z−1/2; (vii) −x+3/2, −y+1/2, z−1/2.

(II) Strontium dimanganese(II) iron(III) tris(orthophosphate). Crystal data

SrMn2Fe(PO4)3 Dx = 3.669 Mg m3
Mr = 538.25 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbcn Cell parameters from 2843 reflections
a = 6.4304 (3) Å θ = 3.3–39.1°
b = 17.8462 (7) Å µ = 10.00 mm1
c = 8.4906 (3) Å T = 296 K
V = 974.37 (7) Å3 Block, dark brown
Z = 4 0.30 × 0.27 × 0.23 mm
F(000) = 1020

(II) Strontium dimanganese(II) iron(III) tris(orthophosphate). Data collection

Bruker X8 APEX diffractometer 2843 independent reflections
Radiation source: fine-focus sealed tube 2564 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
φ and ω scans θmax = 39.1°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −11→10
Tmin = 0.404, Tmax = 0.748 k = −31→31
23889 measured reflections l = −8→15

(II) Strontium dimanganese(II) iron(III) tris(orthophosphate). Refinement

Refinement on F2 0 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0183P)2 + 1.2279P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.021 (Δ/σ)max = 0.001
wR(F2) = 0.048 Δρmax = 1.19 e Å3
S = 1.08 Δρmin = −0.81 e Å3
2843 reflections Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
89 parameters Extinction coefficient: 0.0072 (3)

(II) Strontium dimanganese(II) iron(III) tris(orthophosphate). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(II) Strontium dimanganese(II) iron(III) tris(orthophosphate). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sr1 0.5000 0.43233 (2) 0.7500 0.00986 (4)
Fe1 1.0000 0.31546 (2) 0.7500 0.00485 (4)
Mn1 0.83818 (3) 0.37163 (2) 0.39547 (2) 0.00679 (4)
P1 0.83555 (5) 0.17749 (2) 0.53581 (3) 0.00571 (5)
P2 1.0000 0.46759 (2) 0.7500 0.00485 (7)
O1 1.02378 (15) 0.12570 (6) 0.54770 (13) 0.01473 (18)
O2 0.66091 (14) 0.15203 (5) 0.64550 (11) 0.00922 (14)
O3 0.76936 (14) 0.17505 (5) 0.36165 (10) 0.00794 (14)
O4 0.89115 (17) 0.25971 (6) 0.57468 (12) 0.01448 (18)
O5 0.89256 (14) 0.41164 (5) 0.63388 (10) 0.00662 (13)
O6 0.82775 (15) 0.51251 (5) 0.82684 (12) 0.00991 (14)

(II) Strontium dimanganese(II) iron(III) tris(orthophosphate). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sr1 0.00601 (7) 0.01296 (7) 0.01060 (7) 0.000 −0.00134 (5) 0.000
Fe1 0.00567 (9) 0.00423 (8) 0.00466 (8) 0.000 0.00026 (7) 0.000
Mn1 0.00547 (7) 0.00927 (7) 0.00563 (7) −0.00023 (5) 0.00064 (5) −0.00056 (5)
P1 0.00382 (10) 0.00858 (11) 0.00473 (10) −0.00077 (9) −0.00010 (9) −0.00167 (8)
P2 0.00502 (15) 0.00357 (13) 0.00597 (15) 0.000 −0.00017 (12) 0.000
O1 0.0066 (4) 0.0237 (5) 0.0139 (4) 0.0062 (3) −0.0013 (3) 0.0010 (4)
O2 0.0061 (3) 0.0149 (4) 0.0067 (3) −0.0015 (3) 0.0009 (3) 0.0025 (3)
O3 0.0067 (3) 0.0125 (3) 0.0046 (3) 0.0001 (3) −0.0012 (3) −0.0013 (3)
O4 0.0174 (4) 0.0133 (4) 0.0128 (4) −0.0084 (3) 0.0029 (3) −0.0074 (3)
O5 0.0085 (3) 0.0062 (3) 0.0052 (3) −0.0009 (3) −0.0016 (3) −0.0006 (2)
O6 0.0085 (3) 0.0073 (3) 0.0140 (4) 0.0019 (3) 0.0015 (3) −0.0032 (3)

(II) Strontium dimanganese(II) iron(III) tris(orthophosphate). Geometric parameters (Å, º)

Sr1—O3i 2.6020 (9) Mn1—O1i 2.0790 (10)
Sr1—O3ii 2.6020 (9) Mn1—O2v 2.1462 (9)
Sr1—O6iii 2.6296 (9) Mn1—O6vi 2.1494 (9)
Sr1—O6 2.6296 (10) Mn1—O2vii 2.1641 (9)
Sr1—O5 2.7351 (9) Mn1—O5 2.1748 (9)
Sr1—O5iii 2.7351 (9) Mn1—O4 2.5338 (12)
Sr1—O1i 2.7358 (11) P1—O1 1.5263 (10)
Sr1—O1ii 2.7358 (11) P1—O2 1.5281 (9)
Fe1—O4 1.9224 (10) P1—O3 1.5394 (9)
Fe1—O4iv 1.9224 (10) P1—O4 1.5459 (10)
Fe1—O3v 1.9818 (9) P2—O6 1.5149 (9)
Fe1—O3ii 1.9818 (9) P2—O6iv 1.5149 (9)
Fe1—O5 2.0966 (9) P2—O5iv 1.5641 (9)
Fe1—O5iv 2.0966 (9) P2—O5 1.5641 (9)
O3i—Sr1—O3ii 85.14 (4) O4iv—Fe1—O5 155.20 (4)
O3i—Sr1—O6iii 81.58 (3) O3v—Fe1—O5 89.60 (4)
O3ii—Sr1—O6iii 161.43 (3) O3ii—Fe1—O5 82.35 (4)
O3i—Sr1—O6 161.43 (3) O4—Fe1—O5iv 155.20 (4)
O3ii—Sr1—O6 81.58 (3) O4iv—Fe1—O5iv 86.54 (4)
O6iii—Sr1—O6 114.07 (4) O3v—Fe1—O5iv 82.35 (4)
O3i—Sr1—O5 107.18 (3) O3ii—Fe1—O5iv 89.60 (4)
O3ii—Sr1—O5 60.39 (3) O5—Fe1—O5iv 70.09 (5)
O6iii—Sr1—O5 136.36 (3) O1i—Mn1—O2v 169.25 (4)
O6—Sr1—O5 54.77 (3) O1i—Mn1—O6vi 90.60 (4)
O3i—Sr1—O5iii 60.39 (3) O2v—Mn1—O6vi 100.11 (4)
O3ii—Sr1—O5iii 107.18 (3) O1i—Mn1—O2vii 103.58 (4)
O6iii—Sr1—O5iii 54.77 (3) O2v—Mn1—O2vii 78.47 (4)
O6—Sr1—O5iii 136.36 (3) O6vi—Mn1—O2vii 85.52 (4)
O5—Sr1—O5iii 164.49 (4) O1i—Mn1—O5 86.15 (4)
O3i—Sr1—O1i 54.30 (3) O2v—Mn1—O5 93.44 (4)
O3ii—Sr1—O1i 91.49 (3) O6vi—Mn1—O5 86.65 (4)
O6iii—Sr1—O1i 91.23 (3) O2vii—Mn1—O5 167.55 (4)
O6—Sr1—O1i 112.98 (3) O1i—Mn1—O4 90.54 (4)
O5—Sr1—O1i 64.17 (3) O2v—Mn1—O4 79.18 (4)
O5iii—Sr1—O1i 109.48 (3) O6vi—Mn1—O4 157.72 (4)
O3i—Sr1—O1ii 91.49 (3) O2vii—Mn1—O4 115.78 (3)
O3ii—Sr1—O1ii 54.30 (3) O5—Mn1—O4 71.23 (3)
O6iii—Sr1—O1ii 112.98 (3) O1—P1—O2 111.25 (6)
O6—Sr1—O1ii 91.23 (3) O1—P1—O3 105.40 (6)
O5—Sr1—O1ii 109.48 (3) O2—P1—O3 111.95 (5)
O5iii—Sr1—O1ii 64.17 (3) O1—P1—O4 112.17 (6)
O1i—Sr1—O1ii 135.52 (5) O2—P1—O4 108.80 (6)
O4—Fe1—O4iv 117.67 (7) O3—P1—O4 107.21 (6)
O4—Fe1—O3v 89.54 (4) O6—P2—O6iv 116.11 (7)
O4iv—Fe1—O3v 95.53 (4) O6—P2—O5iv 112.91 (5)
O4—Fe1—O3ii 95.53 (4) O6iv—P2—O5iv 106.63 (5)
O4iv—Fe1—O3ii 89.54 (4) O6—P2—O5 106.64 (5)
O3v—Fe1—O3ii 170.19 (5) O6iv—P2—O5 112.91 (5)
O4—Fe1—O5 86.54 (4) O5iv—P2—O5 100.66 (7)

Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) −x+3/2, −y+1/2, z+1/2; (iii) −x+1, y, −z+3/2; (iv) −x+2, y, −z+3/2; (v) x+1/2, −y+1/2, −z+1; (vi) x, −y+1, z−1/2; (vii) −x+3/2, −y+1/2, z−1/2.

References

  1. Alhakmi, G., Assani, A., Saadi, M. & El Ammari, L. (2013a). Acta Cryst. E69, i40. [DOI] [PMC free article] [PubMed]
  2. Alhakmi, G., Assani, A., Saadi, M., Follet, C. & El Ammari, L. (2013b). Acta Cryst. E69, i56. [DOI] [PMC free article] [PubMed]
  3. Assaaoudi, H., Fang, Z., Ryan, D. H., Butler, I. S. & Kozinski, J. A. (2006). Can. J. Chem. 84, 124–133.
  4. Assani, A., Saadi, M., Alhakmi, G., Houmadi, E. & El Ammari, L. (2013). Acta Cryst. E69, i60. [DOI] [PMC free article] [PubMed]
  5. Attfield, J. P., Cheetham, A. K., Cox, D. E. & Sleight, A. W. (1988). J. Appl. Cryst. 21, 452–457.
  6. Bouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558–560. [DOI] [PMC free article] [PubMed]
  7. Bouzidi, C., Frigui, W. & Zid, M. F. (2015). Acta Cryst. E71, 69–72. [DOI] [PMC free article] [PubMed]
  8. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  9. Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
  10. Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  11. Chouaibi, N., Daidouh, A., Pico, C., Santrich, A. & Veiga, M. L. (2001). J. Solid State Chem. 159, 46–50.
  12. Daidouh, A., Pico, C. & Veiga, M. L. (1999). Solid State Ionics, 124, 109–117.
  13. Durio, C., Daidouh, A., Chouaibi, N., Pico, C. & Veiga, M. L. (2002). J. Solid State Chem. 168, 208–216.
  14. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  15. Ferdov, S., Reis, M. S., Lin, Z. & Ferreira, R. A. S. (2008). Inorg. Chem. 47, 10062–10066. [DOI] [PubMed]
  16. Férey, G., Mellot-Draznieks, C., Serre, C. & Millange, F. (2005). Acc. Chem. Res. 38, 217–225. [DOI] [PubMed]
  17. Im, Y., Kim, P. & Yun, H. (2014). Bull. Korean Chem. Soc. 35, 1225–1228.
  18. Jignasa, A., Rakesh, T. & Uma, C. (2006). J. Chem. Sci. 118, 185–189.
  19. Khmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 690–692. [DOI] [PMC free article] [PubMed]
  20. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  21. Kullberg, L. & Clearfield, A. (1981). J. Phys. Chem. 85, 1585–1589.
  22. López, M.-L., Durio, C., Daidouh, A., Pico, C. & Veiga, M.-L. (2004). Chem. Eur. J. 10, 1106–1113. [DOI] [PubMed]
  23. Moore, P. B. (1971). Am. Mineral. 56, 1955–1975.
  24. Rao, C. N. R., Natarajan, S., Choudhury, A., Neeraj, S. & Ayi, A. A. (2001). Acc. Chem. Res. 34, 80–87. [DOI] [PubMed]
  25. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  26. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  27. Weng, W., Lin, Z., Dummer, N. F., Bartley, J. K., Hutchings, G. J. & Kiely, G. J. (2009). Microsc. Microanal. 15 (Suppl. 2), 1438–1439.
  28. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  29. Zhou, B.-C., Yao, Y.-W. & Wang, R.-J. (2002). Acta Cryst. C58, i109–i110. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989017006120/wm5384sup1.cif

e-73-00767-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017006120/wm5384Isup2.hkl

e-73-00767-Isup2.hkl (247.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989017006120/wm5384IIsup3.hkl

e-73-00767-IIsup3.hkl (227.7KB, hkl)

CCDC references: 1545505, 1545504

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES