Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Apr 28;73(Pt 5):795–797. doi: 10.1107/S2056989017005618

Crystal structure of N-hy­droxy­quinoline-2-carboxamide monohydrate

Inna S Safyanova a,*, Kateryna A Ohui a, Iryna V Omelchenko b, Svitlana V Shyshkina b,c
PMCID: PMC5418809  PMID: 28529801

The N-hy­droxy­quinoline-2-carboxamide mol­ecule has a nearly planar structure [maximum deviation = 0.062 (1) Å] and only the hy­droxy H atom deviates from the mol­ecule plane.

Keywords: crystal structure, hydroxamic acids, hydrogen bonds, π–π stacking inter­actions

Abstract

The title compound, C10H8N2O2·H2O, consists of an N-hy­droxy­quinoline-2-carboxamide mol­ecule in the keto tautomeric form and a water mol­ecule connected through an O—H⋯O hydrogen bond. The N-hy­droxy­quinoline-2-carboxamide mol­ecule has a nearly planar structure [maximum deviation = 0.062 (1) Å] and only the hy­droxy H atom deviates significantly from the mol­ecule plane. In the crystal, π–π stacking between the aromatic rings [inter­centroid distance = 3.887 (1) Å] and inter­molecular O—H⋯O hydrogen bonds organize the crystal components into columns extending along the b-axis direction.

Chemical context  

Hydroxamic acids are important bioligands that exhibit enzyme-inhibitory properties (Marmion et al., 2013) and they have been studied extensively in coordination and bioinorganic chemistry (Ostrowska et al., 2016; Golenya et al., 2012b ; Świątek-Kozłowska et al., 2000; Dobosz et al., 1999). They are widely used in the preparation of metallacrowns (Golenya et al., 2012a ; Gumienna-Kontecka et al., 2013; Safyanova et al., 2015) and as building blocks for synthesis of metal–organic frameworks and coordination polymers (Gumienna-Kontecka et al., 2007; Golenya et al., 2014; Pavlishchuk et al., 2010, 2011).

N-Hy­droxy­quinoline-2-carboxamide, also known as quinoline-2-hydroxamic acid (QuinHA), has been used for the preparation of various metallacrown complexes (Stemmler et al., 1999; Trivedi et al., 2014; Jankolovits et al., 2013). Presently, the Cambridge Structural Database (Groom et al., 2016) contains ten entries on coordination compounds based on N-hy­droxy­quinoline-2-carboxamide, nine of which have been reported within the past four years.graphic file with name e-73-00795-scheme1.jpg

Structural information about the title compound is absent in the literature, however, and this will be useful in controlling the purity of the synthesized ligand and metal complexes by powder diffraction. It is well known that the products of such syntheses can be contaminated with impurities that result from hydrolysis or oxidation of the hydroxamic groups to the carb­oxy­lic group. In addition, syntheses of polynuclear complexes are often carried out with various metal-to-ligand ratios, so that in some cases an excessive qu­antity of the hydroxamic ligand can be present in the isolated samples.

Structural commentary  

The mol­ecular structure of the title compound is presented in Fig. 1. It consists of an N-hy­droxy­quinoline-2-carboxamide mol­ecule in the keto tautomeric form {which is supported by the C=O [1.227 (2) Å] and C—N [1.317 (2) Å] bond lengths} and a water mol­ecule. The carbonyl group possesses a Z conformation against the N1 atom of the quinoline moiety and E conformation against the hy­droxy oxygen atom [torsion angles O2—N2—C10—O1 = 0.8 (2)° and N1—C9—C10—O1 −177.33 (14)°]. The N-hy­droxy­quinoline-2-carboxamide mol­ecule has an almost planar structure (non-hydrogen atoms are planar to within 0.03 Å). Only the H atom of the OH group deviates significantly from the mol­ecular plane: the C—N—O—H torsion angle of −75.1 (13)° is defined by the O—H⋯O hydrogen bond between hy­droxy group and the water mol­ecule. The C—N and C—C bond lengths in the quinoline moiety are typical for 2-substituted pyridine derivatives (Moroz et al., 2012; Strotmeyer et al., 2003; Krämer & Fritsky, 2000).

Figure 1.

Figure 1

The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. The dashed line indicates a hydrogen bond.

Supra­molecular features  

In the crystal, mol­ecules form columns along the b axis as a result of the π–π stacking inter­action between parallel quinoline moieties [symmetry operation x, y + 1, z; inter­planar separation 3.420 (1) Å, inter­centroid distance 3.887 (1) Å, displacement 1.846 (1) Å]. These columns are linked pairwise by the O—H⋯O hydrogen bonds (Table 1) via the bridging water mol­ecules (see Fig. 2). Each water mol­ecule forms two donor hydrogen bonds [H⋯O1 = 1.85 (2) and 2.15 (2) Å] with the carbonyl oxygen atom O1 and one acceptor hydrogen bond with the O—H group of the hydroxamic function that is the strongest hydrogen bond in the crystal [H⋯O2 = 1.67 (2) Å]. This latter hydrogen bond results in a shortened H⋯H contact between the water and hy­droxy hydrogen atoms [2.05 (3) Å]. The doubled columns are linked by weak N—H⋯π (2.71 Å, 159°) as well as van der Waals inter­actions. Weak inter­molecular C—H⋯O contacts (Table 1) are also observed in the crystal.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1S—H1SA⋯O1i 0.85 (2) 2.15 (3) 2.9404 (19) 155 (2)
O1S—H1SA⋯O2i 0.85 (2) 2.54 (2) 3.0850 (18) 124 (2)
O1S—H1SB⋯O1ii 0.93 (2) 1.85 (2) 2.7783 (18) 176 (2)
O2—H2⋯O1S 0.97 (2) 1.67 (2) 2.6407 (18) 175 (2)
C3—H3⋯O2iii 0.999 (16) 2.518 (16) 3.493 (2) 165.0 (15)
C4—H4⋯O2iv 0.975 (19) 2.589 (18) 3.273 (2) 127.3 (12)
C5—H5⋯O1S v 0.967 (17) 2.593 (17) 3.547 (2) 169.0 (13)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 2.

Figure 2

A packing diagram of the title compound. Hydrogen bonds (see Table 1) are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Database survey  

A search of the Cambridge Structural Database (Groom et al., 2016) reveals no crystal structures of isomeric N-hy­droxy­quinoline-carboxamides or their homologues. Two independent studies on the crystal structure of N-hy­droxy­picolinamide have been published recently (Chaiyaveij et al., 2015; Safyanova et al., 2016).

Synthesis and crystallization  

The title compound was obtained by the reaction of a methanol solution of hy­droxy­amine with a mixture of quinaldic acid and ethyl chloro­formate in dry methyl­ene chloride in the presence of N-methyl­morpholine according to the reported procedure (Trivedi et al., 2014). Light-yellow crystals suitable for X-ray diffraction were obtained from aqueous solution by slow evaporation at room temperature (yield 76%).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were found from the difference-Fourier maps and refined isotropically.

Table 2. Experimental details.

Crystal data
Chemical formula C10H8N2O2·H2O
M r 206.20
Crystal system, space group Monoclinic, C2/c
Temperature (K) 298
a, b, c (Å) 21.613 (4), 3.8867 (4), 25.081 (5)
β (°) 115.37 (2)
V3) 1903.7 (6)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.4 × 0.1 × 0.1
 
Data collection
Diffractometer Agilent Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014)
T min, T max 0.730, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7711, 2167, 1387
R int 0.040
(sin θ/λ)max−1) 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.098, 0.97
No. of reflections 2167
No. of parameters 173
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.17

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS97 and SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017005618/xu5902sup1.cif

e-73-00795-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017005618/xu5902Isup2.hkl

e-73-00795-Isup2.hkl (106.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017005618/xu5902Isup3.cml

CCDC reference: 1543825

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The financial support from the European Community’s Seventh Framework Program (FP7/2007–2013) under grant agreement PIRSES-GA-2013–611488 is gratefully acknowledged. KAO acknowledges a DAAD fellowship (Leonhard-Euler-Program).

supplementary crystallographic information

Crystal data

C10H8N2O2·H2O F(000) = 864
Mr = 206.20 Dx = 1.439 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 21.613 (4) Å Cell parameters from 1341 reflections
b = 3.8867 (4) Å θ = 3.8–27.4°
c = 25.081 (5) Å µ = 0.11 mm1
β = 115.37 (2)° T = 298 K
V = 1903.7 (6) Å3 Needle, clear light yellow
Z = 8 0.4 × 0.1 × 0.1 mm

Data collection

Agilent Xcalibur, Sapphire3 diffractometer 2167 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1387 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.040
Detector resolution: 16.1827 pixels mm-1 θmax = 27.5°, θmin = 3.3°
ω scans h = −28→28
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) k = −5→4
Tmin = 0.730, Tmax = 1.000 l = −32→32
7711 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098 H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0454P)2] where P = (Fo2 + 2Fc2)/3
2167 reflections (Δ/σ)max < 0.001
173 parameters Δρmax = 0.14 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.32060 (5) 0.1130 (3) 0.55333 (5) 0.0582 (3)
O2 0.27884 (5) 0.3220 (3) 0.63530 (5) 0.0604 (4)
N1 0.46916 (5) 0.5267 (3) 0.65622 (5) 0.0381 (3)
N2 0.34314 (6) 0.3877 (4) 0.63808 (6) 0.0523 (4)
H2A 0.3705 (8) 0.508 (4) 0.6691 (8) 0.060 (5)*
H2 0.2492 (10) 0.479 (5) 0.6052 (10) 0.090*
H1SA 0.2274 (11) 0.899 (6) 0.5506 (10) 0.090*
H1SB 0.1922 (10) 0.628 (5) 0.5141 (10) 0.090*
C1 0.53537 (6) 0.6016 (3) 0.66788 (6) 0.0359 (3)
C2 0.57630 (7) 0.7759 (4) 0.72050 (7) 0.0424 (4)
H2B 0.5567 (7) 0.834 (4) 0.7473 (7) 0.050 (4)*
C3 0.64285 (8) 0.8497 (4) 0.73422 (8) 0.0469 (4)
H3 0.6734 (8) 0.966 (4) 0.7719 (7) 0.060 (5)*
C4 0.67118 (8) 0.7562 (4) 0.69502 (8) 0.0491 (4)
H4 0.7190 (8) 0.810 (4) 0.7053 (7) 0.055 (4)*
C5 0.63321 (8) 0.5923 (4) 0.64395 (8) 0.0476 (4)
H5 0.6504 (8) 0.527 (4) 0.6156 (7) 0.059 (5)*
C6 0.56373 (7) 0.5090 (3) 0.62831 (7) 0.0391 (3)
C7 0.52127 (8) 0.3386 (4) 0.57617 (7) 0.0461 (4)
H7 0.5385 (8) 0.275 (4) 0.5474 (7) 0.058 (5)*
C8 0.45526 (8) 0.2675 (4) 0.56466 (7) 0.0453 (4)
H8 0.4245 (8) 0.161 (4) 0.5306 (7) 0.054 (5)*
C9 0.43182 (7) 0.3633 (3) 0.60679 (6) 0.0380 (3)
C10 0.35991 (7) 0.2754 (4) 0.59651 (7) 0.0409 (4)
O1S 0.20068 (6) 0.7378 (3) 0.54961 (6) 0.0609 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0489 (6) 0.0750 (8) 0.0461 (7) −0.0163 (5) 0.0158 (6) −0.0158 (6)
O2 0.0396 (6) 0.0884 (9) 0.0583 (8) −0.0119 (5) 0.0259 (6) 0.0006 (6)
N1 0.0342 (6) 0.0446 (7) 0.0360 (7) −0.0008 (5) 0.0153 (5) 0.0006 (6)
N2 0.0363 (7) 0.0751 (10) 0.0480 (9) −0.0148 (7) 0.0206 (7) −0.0130 (8)
C1 0.0326 (7) 0.0384 (7) 0.0380 (8) 0.0029 (6) 0.0163 (6) 0.0065 (6)
C2 0.0378 (8) 0.0501 (9) 0.0412 (9) −0.0006 (7) 0.0187 (7) 0.0014 (7)
C3 0.0376 (8) 0.0518 (9) 0.0488 (11) −0.0046 (7) 0.0162 (8) 0.0013 (8)
C4 0.0363 (8) 0.0525 (10) 0.0616 (12) 0.0015 (7) 0.0240 (8) 0.0078 (8)
C5 0.0442 (9) 0.0510 (9) 0.0588 (11) 0.0057 (7) 0.0328 (9) 0.0065 (8)
C6 0.0395 (7) 0.0395 (8) 0.0430 (9) 0.0062 (6) 0.0221 (7) 0.0062 (7)
C7 0.0522 (9) 0.0505 (9) 0.0438 (10) 0.0055 (7) 0.0282 (8) 0.0008 (7)
C8 0.0481 (9) 0.0490 (9) 0.0385 (9) −0.0015 (7) 0.0182 (8) −0.0058 (7)
C9 0.0374 (7) 0.0387 (7) 0.0371 (9) 0.0003 (6) 0.0154 (7) 0.0025 (6)
C10 0.0391 (8) 0.0453 (8) 0.0357 (9) −0.0023 (6) 0.0135 (7) 0.0020 (7)
O1S 0.0549 (7) 0.0724 (8) 0.0607 (8) −0.0107 (6) 0.0298 (7) −0.0151 (7)

Geometric parameters (Å, º)

O1—C10 1.2266 (17) C4—H4 0.974 (16)
O2—N2 1.3851 (15) C4—C5 1.349 (2)
O2—H2 0.97 (2) C5—H5 0.966 (16)
N1—C1 1.3635 (17) C5—C6 1.417 (2)
N1—C9 1.3169 (17) C6—C7 1.401 (2)
N2—H2A 0.884 (18) C7—H7 0.976 (17)
N2—C10 1.316 (2) C7—C8 1.357 (2)
C1—C2 1.408 (2) C8—H8 0.927 (16)
C1—C6 1.4183 (19) C8—C9 1.404 (2)
C2—H2B 0.962 (16) C9—C10 1.5017 (19)
C2—C3 1.358 (2) O1S—H1SA 0.84 (2)
C3—H3 0.999 (17) O1S—H1SB 0.93 (2)
C3—C4 1.410 (2)
N2—O2—H2 103.8 (12) C4—C5—C6 120.80 (15)
C9—N1—C1 117.93 (12) C6—C5—H5 115.6 (10)
O2—N2—H2A 114.9 (11) C5—C6—C1 118.21 (14)
C10—N2—O2 120.66 (14) C7—C6—C1 117.81 (13)
C10—N2—H2A 124.5 (11) C7—C6—C5 123.98 (14)
N1—C1—C2 118.95 (13) C6—C7—H7 120.4 (9)
N1—C1—C6 121.61 (13) C8—C7—C6 120.22 (14)
C2—C1—C6 119.44 (13) C8—C7—H7 119.4 (9)
C1—C2—H2B 118.7 (9) C7—C8—H8 124.1 (10)
C3—C2—C1 120.73 (15) C7—C8—C9 118.11 (15)
C3—C2—H2B 120.6 (9) C9—C8—H8 117.8 (10)
C2—C3—H3 122.3 (9) N1—C9—C8 124.30 (13)
C2—C3—C4 119.85 (16) N1—C9—C10 116.29 (12)
C4—C3—H3 117.8 (9) C8—C9—C10 119.41 (14)
C3—C4—H4 119.2 (9) O1—C10—N2 123.24 (14)
C5—C4—C3 120.96 (15) O1—C10—C9 122.90 (13)
C5—C4—H4 119.8 (9) N2—C10—C9 113.86 (13)
C4—C5—H5 123.6 (10) H1SA—O1S—H1SB 102.7 (19)
O2—N2—C10—O1 0.8 (2) C2—C3—C4—C5 −0.3 (2)
O2—N2—C10—C9 −178.96 (12) C3—C4—C5—C6 −0.1 (2)
N1—C1—C2—C3 178.81 (13) C4—C5—C6—C1 −0.2 (2)
N1—C1—C6—C5 −179.24 (12) C4—C5—C6—C7 −179.86 (15)
N1—C1—C6—C7 0.4 (2) C5—C6—C7—C8 179.76 (14)
N1—C9—C10—O1 −177.33 (14) C6—C1—C2—C3 −1.3 (2)
N1—C9—C10—N2 2.48 (19) C6—C7—C8—C9 −1.2 (2)
C1—N1—C9—C8 −1.4 (2) C7—C8—C9—N1 1.9 (2)
C1—N1—C9—C10 178.08 (11) C7—C8—C9—C10 −177.53 (13)
C1—C2—C3—C4 1.0 (2) C8—C9—C10—O1 2.2 (2)
C1—C6—C7—C8 0.1 (2) C8—C9—C10—N2 −178.00 (14)
C2—C1—C6—C5 0.91 (19) C9—N1—C1—C2 −179.94 (12)
C2—C1—C6—C7 −179.44 (13) C9—N1—C1—C6 0.20 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1S—H1SA···O1i 0.85 (2) 2.15 (3) 2.9404 (19) 155 (2)
O1S—H1SA···O2i 0.85 (2) 2.54 (2) 3.0850 (18) 124 (2)
O1S—H1SB···O1ii 0.93 (2) 1.85 (2) 2.7783 (18) 176 (2)
O2—H2···O1S 0.97 (2) 1.67 (2) 2.6407 (18) 175 (2)
C3—H3···O2iii 0.999 (16) 2.518 (16) 3.493 (2) 165.0 (15)
C4—H4···O2iv 0.975 (19) 2.589 (18) 3.273 (2) 127.3 (12)
C5—H5···O1Sv 0.967 (17) 2.593 (17) 3.547 (2) 169.0 (13)

Symmetry codes: (i) x, y+1, z; (ii) −x+1/2, −y+1/2, −z+1; (iii) −x+1, y+1, −z+3/2; (iv) x+1/2, y+1/2, z; (v) x+1/2, y−1/2, z.

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Chaiyaveij, D., Batsanov, A. S., Fox, M. A., Marder, T. B. & Whiting, A. (2015). J. Org. Chem. 80, 9518–9534. [DOI] [PubMed]
  3. Dobosz, A., Dudarenko, N. M., Fritsky, I. O., Głowiak, T., Karaczyn, A., Kozłowski, H., Sliva, T. Yu. & Świątek-Kozłowska, J. (1999). J. Chem. Soc. Dalton Trans. pp. 743–750.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Golenya, I. A., Gumienna-Kontecka, E., Boyko, A. N., Haukka, M. & Fritsky, I. O. (2012a). Inorg. Chem. 51, 6221–6227. [DOI] [PubMed]
  6. Golenya, I. A., Gumienna-Kontecka, E., Boyko, A. N., Haukka, M. & Fritsky, I. O. (2012b). Dalton Trans. 41, 9427–9430. [DOI] [PubMed]
  7. Golenya, I. A., Gumienna-Kontecka, E., Haukka, M., Korsun, O. M., Kalugin, O. N. & Fritsky, I. O. (2014). CrystEngComm, 16, 1904–1918.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Świątek-Kozłowska, J. (2007). New J. Chem. 31, 1798–1805.
  10. Gumienna-Kontecka, E., Golenya, I. A., Szebesczyk, A., Haukka, M., Krämer, R. & Fritsky, I. O. (2013). Inorg. Chem. 52, 7633–7644. [DOI] [PubMed]
  11. Jankolovits, J., Kampf, J. W. & Pecoraro, V. L. (2013). Inorg. Chem. 52, 5063–5076. [DOI] [PubMed]
  12. Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510.
  13. Marmion, C. J., Parker, J. P. & Nolan, K. B. (2013). Comprehensive Inorganic Chemistry II, in Elements to Applications, Vol. 3, edited by J. Reedijk, & K. Poeppelmeier, pp. 684–708. Amsterdam: Elsevier.
  14. Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447. [DOI] [PubMed]
  15. Ostrowska, M., Fritsky, I. O., Gumienna-Kontecka, E. & Pavlishchuk, A. V. (2016). Coord. Chem. Rev. 327–328, 304–332.
  16. Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826–4836.
  17. Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851–4858.
  18. Safyanova, I. S., Golenya, I. A., Pavlenko, V. A., Gumienna-Kontecka, E., Pekhnyo, V. I., Bon, V. V. & Fritsky, I. O. (2015). Z. Anorg. Allg. Chem. 641, 2326–2332.
  19. Safyanova, I. S., Ohui, K. A. & Omelchenko, I. V. (2016). Acta Cryst. E72, 117–119. [DOI] [PMC free article] [PubMed]
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807–2817. [DOI] [PubMed]
  22. Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547.
  23. Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.
  24. Trivedi, E. R., Eliseeva, S. V., Jankolovits, J., Olmstead, M. M., Petoud, S. & Pecoraro, V. L. (2014). J. Am. Chem. Soc. 136, 1526–1534. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017005618/xu5902sup1.cif

e-73-00795-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017005618/xu5902Isup2.hkl

e-73-00795-Isup2.hkl (106.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017005618/xu5902Isup3.cml

CCDC reference: 1543825

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES