The N-hydroxyquinoline-2-carboxamide molecule has a nearly planar structure [maximum deviation = 0.062 (1) Å] and only the hydroxy H atom deviates from the molecule plane.
Keywords: crystal structure, hydroxamic acids, hydrogen bonds, π–π stacking interactions
Abstract
The title compound, C10H8N2O2·H2O, consists of an N-hydroxyquinoline-2-carboxamide molecule in the keto tautomeric form and a water molecule connected through an O—H⋯O hydrogen bond. The N-hydroxyquinoline-2-carboxamide molecule has a nearly planar structure [maximum deviation = 0.062 (1) Å] and only the hydroxy H atom deviates significantly from the molecule plane. In the crystal, π–π stacking between the aromatic rings [intercentroid distance = 3.887 (1) Å] and intermolecular O—H⋯O hydrogen bonds organize the crystal components into columns extending along the b-axis direction.
Chemical context
Hydroxamic acids are important bioligands that exhibit enzyme-inhibitory properties (Marmion et al., 2013 ▸) and they have been studied extensively in coordination and bioinorganic chemistry (Ostrowska et al., 2016 ▸; Golenya et al., 2012b ▸; Świątek-Kozłowska et al., 2000 ▸; Dobosz et al., 1999 ▸). They are widely used in the preparation of metallacrowns (Golenya et al., 2012a ▸; Gumienna-Kontecka et al., 2013 ▸; Safyanova et al., 2015 ▸) and as building blocks for synthesis of metal–organic frameworks and coordination polymers (Gumienna-Kontecka et al., 2007 ▸; Golenya et al., 2014 ▸; Pavlishchuk et al., 2010 ▸, 2011 ▸).
N-Hydroxyquinoline-2-carboxamide, also known as quinoline-2-hydroxamic acid (QuinHA), has been used for the preparation of various metallacrown complexes (Stemmler et al., 1999 ▸; Trivedi et al., 2014 ▸; Jankolovits et al., 2013 ▸). Presently, the Cambridge Structural Database (Groom et al., 2016 ▸) contains ten entries on coordination compounds based on N-hydroxyquinoline-2-carboxamide, nine of which have been reported within the past four years.
Structural information about the title compound is absent in the literature, however, and this will be useful in controlling the purity of the synthesized ligand and metal complexes by powder diffraction. It is well known that the products of such syntheses can be contaminated with impurities that result from hydrolysis or oxidation of the hydroxamic groups to the carboxylic group. In addition, syntheses of polynuclear complexes are often carried out with various metal-to-ligand ratios, so that in some cases an excessive quantity of the hydroxamic ligand can be present in the isolated samples.
Structural commentary
The molecular structure of the title compound is presented in Fig. 1 ▸. It consists of an N-hydroxyquinoline-2-carboxamide molecule in the keto tautomeric form {which is supported by the C=O [1.227 (2) Å] and C—N [1.317 (2) Å] bond lengths} and a water molecule. The carbonyl group possesses a Z conformation against the N1 atom of the quinoline moiety and E conformation against the hydroxy oxygen atom [torsion angles O2—N2—C10—O1 = 0.8 (2)° and N1—C9—C10—O1 −177.33 (14)°]. The N-hydroxyquinoline-2-carboxamide molecule has an almost planar structure (non-hydrogen atoms are planar to within 0.03 Å). Only the H atom of the OH group deviates significantly from the molecular plane: the C—N—O—H torsion angle of −75.1 (13)° is defined by the O—H⋯O hydrogen bond between hydroxy group and the water molecule. The C—N and C—C bond lengths in the quinoline moiety are typical for 2-substituted pyridine derivatives (Moroz et al., 2012 ▸; Strotmeyer et al., 2003 ▸; Krämer & Fritsky, 2000 ▸).
Figure 1.
The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. The dashed line indicates a hydrogen bond.
Supramolecular features
In the crystal, molecules form columns along the b axis as a result of the π–π stacking interaction between parallel quinoline moieties [symmetry operation x, y + 1, z; interplanar separation 3.420 (1) Å, intercentroid distance 3.887 (1) Å, displacement 1.846 (1) Å]. These columns are linked pairwise by the O—H⋯O hydrogen bonds (Table 1 ▸) via the bridging water molecules (see Fig. 2 ▸). Each water molecule forms two donor hydrogen bonds [H⋯O1 = 1.85 (2) and 2.15 (2) Å] with the carbonyl oxygen atom O1 and one acceptor hydrogen bond with the O—H group of the hydroxamic function that is the strongest hydrogen bond in the crystal [H⋯O2 = 1.67 (2) Å]. This latter hydrogen bond results in a shortened H⋯H contact between the water and hydroxy hydrogen atoms [2.05 (3) Å]. The doubled columns are linked by weak N—H⋯π (2.71 Å, 159°) as well as van der Waals interactions. Weak intermolecular C—H⋯O contacts (Table 1 ▸) are also observed in the crystal.
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1S—H1SA⋯O1i | 0.85 (2) | 2.15 (3) | 2.9404 (19) | 155 (2) |
| O1S—H1SA⋯O2i | 0.85 (2) | 2.54 (2) | 3.0850 (18) | 124 (2) |
| O1S—H1SB⋯O1ii | 0.93 (2) | 1.85 (2) | 2.7783 (18) | 176 (2) |
| O2—H2⋯O1S | 0.97 (2) | 1.67 (2) | 2.6407 (18) | 175 (2) |
| C3—H3⋯O2iii | 0.999 (16) | 2.518 (16) | 3.493 (2) | 165.0 (15) |
| C4—H4⋯O2iv | 0.975 (19) | 2.589 (18) | 3.273 (2) | 127.3 (12) |
| C5—H5⋯O1S v | 0.967 (17) | 2.593 (17) | 3.547 (2) | 169.0 (13) |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
.
Figure 2.
A packing diagram of the title compound. Hydrogen bonds (see Table 1 ▸) are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
Database survey
A search of the Cambridge Structural Database (Groom et al., 2016 ▸) reveals no crystal structures of isomeric N-hydroxyquinoline-carboxamides or their homologues. Two independent studies on the crystal structure of N-hydroxypicolinamide have been published recently (Chaiyaveij et al., 2015 ▸; Safyanova et al., 2016 ▸).
Synthesis and crystallization
The title compound was obtained by the reaction of a methanol solution of hydroxyamine with a mixture of quinaldic acid and ethyl chloroformate in dry methylene chloride in the presence of N-methylmorpholine according to the reported procedure (Trivedi et al., 2014 ▸). Light-yellow crystals suitable for X-ray diffraction were obtained from aqueous solution by slow evaporation at room temperature (yield 76%).
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. All hydrogen atoms were found from the difference-Fourier maps and refined isotropically.
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | C10H8N2O2·H2O |
| M r | 206.20 |
| Crystal system, space group | Monoclinic, C2/c |
| Temperature (K) | 298 |
| a, b, c (Å) | 21.613 (4), 3.8867 (4), 25.081 (5) |
| β (°) | 115.37 (2) |
| V (Å3) | 1903.7 (6) |
| Z | 8 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.11 |
| Crystal size (mm) | 0.4 × 0.1 × 0.1 |
| Data collection | |
| Diffractometer | Agilent Xcalibur, Sapphire3 |
| Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2014 ▸) |
| T min, T max | 0.730, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 7711, 2167, 1387 |
| R int | 0.040 |
| (sin θ/λ)max (Å−1) | 0.650 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.040, 0.098, 0.97 |
| No. of reflections | 2167 |
| No. of parameters | 173 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.14, −0.17 |
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017005618/xu5902sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017005618/xu5902Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989017005618/xu5902Isup3.cml
CCDC reference: 1543825
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The financial support from the European Community’s Seventh Framework Program (FP7/2007–2013) under grant agreement PIRSES-GA-2013–611488 is gratefully acknowledged. KAO acknowledges a DAAD fellowship (Leonhard-Euler-Program).
supplementary crystallographic information
Crystal data
| C10H8N2O2·H2O | F(000) = 864 |
| Mr = 206.20 | Dx = 1.439 Mg m−3 |
| Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 21.613 (4) Å | Cell parameters from 1341 reflections |
| b = 3.8867 (4) Å | θ = 3.8–27.4° |
| c = 25.081 (5) Å | µ = 0.11 mm−1 |
| β = 115.37 (2)° | T = 298 K |
| V = 1903.7 (6) Å3 | Needle, clear light yellow |
| Z = 8 | 0.4 × 0.1 × 0.1 mm |
Data collection
| Agilent Xcalibur, Sapphire3 diffractometer | 2167 independent reflections |
| Radiation source: Enhance (Mo) X-ray Source | 1387 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.040 |
| Detector resolution: 16.1827 pixels mm-1 | θmax = 27.5°, θmin = 3.3° |
| ω scans | h = −28→28 |
| Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −5→4 |
| Tmin = 0.730, Tmax = 1.000 | l = −32→32 |
| 7711 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.098 | H atoms treated by a mixture of independent and constrained refinement |
| S = 0.97 | w = 1/[σ2(Fo2) + (0.0454P)2] where P = (Fo2 + 2Fc2)/3 |
| 2167 reflections | (Δ/σ)max < 0.001 |
| 173 parameters | Δρmax = 0.14 e Å−3 |
| 0 restraints | Δρmin = −0.17 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.32060 (5) | 0.1130 (3) | 0.55333 (5) | 0.0582 (3) | |
| O2 | 0.27884 (5) | 0.3220 (3) | 0.63530 (5) | 0.0604 (4) | |
| N1 | 0.46916 (5) | 0.5267 (3) | 0.65622 (5) | 0.0381 (3) | |
| N2 | 0.34314 (6) | 0.3877 (4) | 0.63808 (6) | 0.0523 (4) | |
| H2A | 0.3705 (8) | 0.508 (4) | 0.6691 (8) | 0.060 (5)* | |
| H2 | 0.2492 (10) | 0.479 (5) | 0.6052 (10) | 0.090* | |
| H1SA | 0.2274 (11) | 0.899 (6) | 0.5506 (10) | 0.090* | |
| H1SB | 0.1922 (10) | 0.628 (5) | 0.5141 (10) | 0.090* | |
| C1 | 0.53537 (6) | 0.6016 (3) | 0.66788 (6) | 0.0359 (3) | |
| C2 | 0.57630 (7) | 0.7759 (4) | 0.72050 (7) | 0.0424 (4) | |
| H2B | 0.5567 (7) | 0.834 (4) | 0.7473 (7) | 0.050 (4)* | |
| C3 | 0.64285 (8) | 0.8497 (4) | 0.73422 (8) | 0.0469 (4) | |
| H3 | 0.6734 (8) | 0.966 (4) | 0.7719 (7) | 0.060 (5)* | |
| C4 | 0.67118 (8) | 0.7562 (4) | 0.69502 (8) | 0.0491 (4) | |
| H4 | 0.7190 (8) | 0.810 (4) | 0.7053 (7) | 0.055 (4)* | |
| C5 | 0.63321 (8) | 0.5923 (4) | 0.64395 (8) | 0.0476 (4) | |
| H5 | 0.6504 (8) | 0.527 (4) | 0.6156 (7) | 0.059 (5)* | |
| C6 | 0.56373 (7) | 0.5090 (3) | 0.62831 (7) | 0.0391 (3) | |
| C7 | 0.52127 (8) | 0.3386 (4) | 0.57617 (7) | 0.0461 (4) | |
| H7 | 0.5385 (8) | 0.275 (4) | 0.5474 (7) | 0.058 (5)* | |
| C8 | 0.45526 (8) | 0.2675 (4) | 0.56466 (7) | 0.0453 (4) | |
| H8 | 0.4245 (8) | 0.161 (4) | 0.5306 (7) | 0.054 (5)* | |
| C9 | 0.43182 (7) | 0.3633 (3) | 0.60679 (6) | 0.0380 (3) | |
| C10 | 0.35991 (7) | 0.2754 (4) | 0.59651 (7) | 0.0409 (4) | |
| O1S | 0.20068 (6) | 0.7378 (3) | 0.54961 (6) | 0.0609 (4) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0489 (6) | 0.0750 (8) | 0.0461 (7) | −0.0163 (5) | 0.0158 (6) | −0.0158 (6) |
| O2 | 0.0396 (6) | 0.0884 (9) | 0.0583 (8) | −0.0119 (5) | 0.0259 (6) | 0.0006 (6) |
| N1 | 0.0342 (6) | 0.0446 (7) | 0.0360 (7) | −0.0008 (5) | 0.0153 (5) | 0.0006 (6) |
| N2 | 0.0363 (7) | 0.0751 (10) | 0.0480 (9) | −0.0148 (7) | 0.0206 (7) | −0.0130 (8) |
| C1 | 0.0326 (7) | 0.0384 (7) | 0.0380 (8) | 0.0029 (6) | 0.0163 (6) | 0.0065 (6) |
| C2 | 0.0378 (8) | 0.0501 (9) | 0.0412 (9) | −0.0006 (7) | 0.0187 (7) | 0.0014 (7) |
| C3 | 0.0376 (8) | 0.0518 (9) | 0.0488 (11) | −0.0046 (7) | 0.0162 (8) | 0.0013 (8) |
| C4 | 0.0363 (8) | 0.0525 (10) | 0.0616 (12) | 0.0015 (7) | 0.0240 (8) | 0.0078 (8) |
| C5 | 0.0442 (9) | 0.0510 (9) | 0.0588 (11) | 0.0057 (7) | 0.0328 (9) | 0.0065 (8) |
| C6 | 0.0395 (7) | 0.0395 (8) | 0.0430 (9) | 0.0062 (6) | 0.0221 (7) | 0.0062 (7) |
| C7 | 0.0522 (9) | 0.0505 (9) | 0.0438 (10) | 0.0055 (7) | 0.0282 (8) | 0.0008 (7) |
| C8 | 0.0481 (9) | 0.0490 (9) | 0.0385 (9) | −0.0015 (7) | 0.0182 (8) | −0.0058 (7) |
| C9 | 0.0374 (7) | 0.0387 (7) | 0.0371 (9) | 0.0003 (6) | 0.0154 (7) | 0.0025 (6) |
| C10 | 0.0391 (8) | 0.0453 (8) | 0.0357 (9) | −0.0023 (6) | 0.0135 (7) | 0.0020 (7) |
| O1S | 0.0549 (7) | 0.0724 (8) | 0.0607 (8) | −0.0107 (6) | 0.0298 (7) | −0.0151 (7) |
Geometric parameters (Å, º)
| O1—C10 | 1.2266 (17) | C4—H4 | 0.974 (16) |
| O2—N2 | 1.3851 (15) | C4—C5 | 1.349 (2) |
| O2—H2 | 0.97 (2) | C5—H5 | 0.966 (16) |
| N1—C1 | 1.3635 (17) | C5—C6 | 1.417 (2) |
| N1—C9 | 1.3169 (17) | C6—C7 | 1.401 (2) |
| N2—H2A | 0.884 (18) | C7—H7 | 0.976 (17) |
| N2—C10 | 1.316 (2) | C7—C8 | 1.357 (2) |
| C1—C2 | 1.408 (2) | C8—H8 | 0.927 (16) |
| C1—C6 | 1.4183 (19) | C8—C9 | 1.404 (2) |
| C2—H2B | 0.962 (16) | C9—C10 | 1.5017 (19) |
| C2—C3 | 1.358 (2) | O1S—H1SA | 0.84 (2) |
| C3—H3 | 0.999 (17) | O1S—H1SB | 0.93 (2) |
| C3—C4 | 1.410 (2) | ||
| N2—O2—H2 | 103.8 (12) | C4—C5—C6 | 120.80 (15) |
| C9—N1—C1 | 117.93 (12) | C6—C5—H5 | 115.6 (10) |
| O2—N2—H2A | 114.9 (11) | C5—C6—C1 | 118.21 (14) |
| C10—N2—O2 | 120.66 (14) | C7—C6—C1 | 117.81 (13) |
| C10—N2—H2A | 124.5 (11) | C7—C6—C5 | 123.98 (14) |
| N1—C1—C2 | 118.95 (13) | C6—C7—H7 | 120.4 (9) |
| N1—C1—C6 | 121.61 (13) | C8—C7—C6 | 120.22 (14) |
| C2—C1—C6 | 119.44 (13) | C8—C7—H7 | 119.4 (9) |
| C1—C2—H2B | 118.7 (9) | C7—C8—H8 | 124.1 (10) |
| C3—C2—C1 | 120.73 (15) | C7—C8—C9 | 118.11 (15) |
| C3—C2—H2B | 120.6 (9) | C9—C8—H8 | 117.8 (10) |
| C2—C3—H3 | 122.3 (9) | N1—C9—C8 | 124.30 (13) |
| C2—C3—C4 | 119.85 (16) | N1—C9—C10 | 116.29 (12) |
| C4—C3—H3 | 117.8 (9) | C8—C9—C10 | 119.41 (14) |
| C3—C4—H4 | 119.2 (9) | O1—C10—N2 | 123.24 (14) |
| C5—C4—C3 | 120.96 (15) | O1—C10—C9 | 122.90 (13) |
| C5—C4—H4 | 119.8 (9) | N2—C10—C9 | 113.86 (13) |
| C4—C5—H5 | 123.6 (10) | H1SA—O1S—H1SB | 102.7 (19) |
| O2—N2—C10—O1 | 0.8 (2) | C2—C3—C4—C5 | −0.3 (2) |
| O2—N2—C10—C9 | −178.96 (12) | C3—C4—C5—C6 | −0.1 (2) |
| N1—C1—C2—C3 | 178.81 (13) | C4—C5—C6—C1 | −0.2 (2) |
| N1—C1—C6—C5 | −179.24 (12) | C4—C5—C6—C7 | −179.86 (15) |
| N1—C1—C6—C7 | 0.4 (2) | C5—C6—C7—C8 | 179.76 (14) |
| N1—C9—C10—O1 | −177.33 (14) | C6—C1—C2—C3 | −1.3 (2) |
| N1—C9—C10—N2 | 2.48 (19) | C6—C7—C8—C9 | −1.2 (2) |
| C1—N1—C9—C8 | −1.4 (2) | C7—C8—C9—N1 | 1.9 (2) |
| C1—N1—C9—C10 | 178.08 (11) | C7—C8—C9—C10 | −177.53 (13) |
| C1—C2—C3—C4 | 1.0 (2) | C8—C9—C10—O1 | 2.2 (2) |
| C1—C6—C7—C8 | 0.1 (2) | C8—C9—C10—N2 | −178.00 (14) |
| C2—C1—C6—C5 | 0.91 (19) | C9—N1—C1—C2 | −179.94 (12) |
| C2—C1—C6—C7 | −179.44 (13) | C9—N1—C1—C6 | 0.20 (19) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1S—H1SA···O1i | 0.85 (2) | 2.15 (3) | 2.9404 (19) | 155 (2) |
| O1S—H1SA···O2i | 0.85 (2) | 2.54 (2) | 3.0850 (18) | 124 (2) |
| O1S—H1SB···O1ii | 0.93 (2) | 1.85 (2) | 2.7783 (18) | 176 (2) |
| O2—H2···O1S | 0.97 (2) | 1.67 (2) | 2.6407 (18) | 175 (2) |
| C3—H3···O2iii | 0.999 (16) | 2.518 (16) | 3.493 (2) | 165.0 (15) |
| C4—H4···O2iv | 0.975 (19) | 2.589 (18) | 3.273 (2) | 127.3 (12) |
| C5—H5···O1Sv | 0.967 (17) | 2.593 (17) | 3.547 (2) | 169.0 (13) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1/2, −y+1/2, −z+1; (iii) −x+1, y+1, −z+3/2; (iv) x+1/2, y+1/2, z; (v) x+1/2, y−1/2, z.
References
- Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Chaiyaveij, D., Batsanov, A. S., Fox, M. A., Marder, T. B. & Whiting, A. (2015). J. Org. Chem. 80, 9518–9534. [DOI] [PubMed]
- Dobosz, A., Dudarenko, N. M., Fritsky, I. O., Głowiak, T., Karaczyn, A., Kozłowski, H., Sliva, T. Yu. & Świątek-Kozłowska, J. (1999). J. Chem. Soc. Dalton Trans. pp. 743–750.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Golenya, I. A., Gumienna-Kontecka, E., Boyko, A. N., Haukka, M. & Fritsky, I. O. (2012a). Inorg. Chem. 51, 6221–6227. [DOI] [PubMed]
- Golenya, I. A., Gumienna-Kontecka, E., Boyko, A. N., Haukka, M. & Fritsky, I. O. (2012b). Dalton Trans. 41, 9427–9430. [DOI] [PubMed]
- Golenya, I. A., Gumienna-Kontecka, E., Haukka, M., Korsun, O. M., Kalugin, O. N. & Fritsky, I. O. (2014). CrystEngComm, 16, 1904–1918.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Świątek-Kozłowska, J. (2007). New J. Chem. 31, 1798–1805.
- Gumienna-Kontecka, E., Golenya, I. A., Szebesczyk, A., Haukka, M., Krämer, R. & Fritsky, I. O. (2013). Inorg. Chem. 52, 7633–7644. [DOI] [PubMed]
- Jankolovits, J., Kampf, J. W. & Pecoraro, V. L. (2013). Inorg. Chem. 52, 5063–5076. [DOI] [PubMed]
- Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510.
- Marmion, C. J., Parker, J. P. & Nolan, K. B. (2013). Comprehensive Inorganic Chemistry II, in Elements to Applications, Vol. 3, edited by J. Reedijk, & K. Poeppelmeier, pp. 684–708. Amsterdam: Elsevier.
- Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447. [DOI] [PubMed]
- Ostrowska, M., Fritsky, I. O., Gumienna-Kontecka, E. & Pavlishchuk, A. V. (2016). Coord. Chem. Rev. 327–328, 304–332.
- Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826–4836.
- Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851–4858.
- Safyanova, I. S., Golenya, I. A., Pavlenko, V. A., Gumienna-Kontecka, E., Pekhnyo, V. I., Bon, V. V. & Fritsky, I. O. (2015). Z. Anorg. Allg. Chem. 641, 2326–2332.
- Safyanova, I. S., Ohui, K. A. & Omelchenko, I. V. (2016). Acta Cryst. E72, 117–119. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807–2817. [DOI] [PubMed]
- Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547.
- Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.
- Trivedi, E. R., Eliseeva, S. V., Jankolovits, J., Olmstead, M. M., Petoud, S. & Pecoraro, V. L. (2014). J. Am. Chem. Soc. 136, 1526–1534. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017005618/xu5902sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017005618/xu5902Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989017005618/xu5902Isup3.cml
CCDC reference: 1543825
Additional supporting information: crystallographic information; 3D view; checkCIF report


