Abstract
The relationship of indoleacetic acid oxidase activity to peroxidase activity is complicated by numerous multiple forms of this enzyme system. It is not known if all isozymes of this complex system contain both types of activity. Isozyme analysis of commercial horseradish peroxidase and leaf extracts of yellow birch (Betula alleghaniensis) by isoelectric focusing in polyacrylamide gels was used to examine this problem. Horseradish and birch exhibited 20 and 13 peroxidase isozymes, respectively, by staining with benzidine or scopoletin. Guaiacol was less sensitive. Indoleacetic acid oxidase staining (dimethylaminocinnamaldehyde) generally showed fewer bands, and left doubt as to the residence of both types of activity on all isozymes. Elution of the isozymes from the gels and wet assays verified that all peroxidase isozymes contained indoleacetic acid oxidase activity as well. Estimation of oxidase to peroxidase ratios for the major bands indicated small differences in this parameter. A unique isozyme for one or the other type of activity was not found.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Frenkel C. Involvement of Peroxidase and Indole-3-acetic Acid Oxidase Isozymes from Pear, Tomato, and Blueberry Fruit in Ripening. Plant Physiol. 1972 May;49(5):757–763. doi: 10.1104/pp.49.5.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GALSTON A. W., BONNER J., BAKER R. S. Flavoprotein and peroxidase as components of the indoleacetic acid oxidase system of peas. Arch Biochem Biophys. 1953 Feb;42(2):456–470. doi: 10.1016/0003-9861(53)90373-7. [DOI] [PubMed] [Google Scholar]
- Kay E., Shannon L. M., Lew J. Y. Peroxidase isozymes from horseradish roots. II. Catalytic properties. J Biol Chem. 1967 May 25;242(10):2470–2473. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Liu E. H., Lamport D. T. The pH induced modification of the electrophoretic mobilities of horseradish peroxidase isozymes. Arch Biochem Biophys. 1973 Oct;158(2):822–826. doi: 10.1016/0003-9861(73)90578-x. [DOI] [PubMed] [Google Scholar]
- Macnicol P. K. Peroxidases of the Alaska pea (Pisum sativum L.). Enzymic properties and distribution within the plant. Arch Biochem Biophys. 1966 Nov;117(2):347–356. doi: 10.1016/0003-9861(66)90422-x. [DOI] [PubMed] [Google Scholar]
- Schafer P., Wender S. H., Smith E. C. Effect of scopoletin on two anodic isoperoxidases isolated from tobacco tissue culture w-38. Plant Physiol. 1971 Aug;48(2):232–233. doi: 10.1104/pp.48.2.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stafford H. A., Bravinder-Bree S. Peroxidase isozymes of first internodes of sorghum: tissue and intracellular localization and multiple peaks of activity isolated by gel filtration chromatography. Plant Physiol. 1972 Jun;49(6):950–956. doi: 10.1104/pp.49.6.950. [DOI] [PMC free article] [PubMed] [Google Scholar]