Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1975 Dec;56(6):780–785. doi: 10.1104/pp.56.6.780

Cell-free Synthesis of the Major Storage Protein of the Bean, Phaseolus vulgaris L. 1

Sai-Ming M Sun a, Barry U Buchbinder a, Timothy C Hall a
PMCID: PMC541924  PMID: 16659394

Abstract

As seeds of the French bean (Phaseolus vulgaris, L. cv. Tendergreen) mature, a single protein, G1 globulin (analogous to legumin), represents the majority of protein synthesized. Washed polysomes extracted from developing cotyledons had little endogenous activity in amino acid incorporation, but on addition of cell-free extracts from wheat germ, active incorporation was obtained, the level being similar to that with viral RNA as messenger. The Mg2+ optimum for protein synthesis in the presence of bean polysomes was 6 mm compared with 4 mm for synthesis of viral polypeptides in the wheat germ system. Using T-2 toxin as an inhibitor, it was shown that 29% of the incorporation depended on initiation events. Electrophoretic analysis of the total polypeptide products of cell-free synthesis gave a disperse profile. Centrifugation to remove polysome-bound peptides after 60 minutes incubation gave a supernatant having a product with the same electrophoretic mobility as G1 globulin and containing 26% of the radioactivity present in the gel. Protein eluted from this peak was subjected to re-electrophoresis and shown to consist of the three polypeptide subunits characteristic of G1 globulin.

Full text

PDF
780

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BONNER J., HUANG R. C., GILDEN R. V. CHROMOSOMALLY DIRECTED PROTEIN SYNTHESIS. Proc Natl Acad Sci U S A. 1963 Nov;50:893–900. doi: 10.1073/pnas.50.5.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beevers L., Poulson R. Protein Synthesis in Cotyledons of Pisum sativum L: I. Changes in Cell-Free Amino Acid Incorporation Capacity during Seed Development and Maturation. Plant Physiol. 1972 Apr;49(4):476–481. doi: 10.1104/pp.49.4.476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blair G. E., Ellis R. J. Protein synthesis in chloroplasts. I. Light-driven synthesis of the large subunit of fraction I protein by isolated pea chloroplasts. Biochim Biophys Acta. 1973 Aug 24;319(2):223–234. doi: 10.1016/0005-2787(73)90013-0. [DOI] [PubMed] [Google Scholar]
  4. Davies J. W., Hall T. C. Liquid scintillation counting methods for accurate assay of beta radioactivity in biological experiments. Anal Biochem. 1969 Jan;27(1):77–90. doi: 10.1016/0003-2697(69)90221-8. [DOI] [PubMed] [Google Scholar]
  5. Davies J. W., Kaesberg P. Translation of virus mRNA: synthesis of bacteriophage Q beta proteins in a cell-free extract from wheat embryo. J Virol. 1973 Dec;12(6):1434–1441. doi: 10.1128/jvi.12.6.1434-1441.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gray J. C., Kekwick R. G. The synthesis of the small subunit of ribulose 1,5-bisphosphate carboxylase in the french bean Phaseolus vulgaris. Eur J Biochem. 1974 May 15;44(2):491–500. doi: 10.1111/j.1432-1033.1974.tb03507.x. [DOI] [PubMed] [Google Scholar]
  7. Hague D. R. Studies of storage proteins of higher plants: I. Concanavalin a from three species of the genus canavalia. Plant Physiol. 1975 Apr;55(4):636–642. doi: 10.1104/pp.55.4.636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lodish H. F. Model for the regulation of mRNA translation applied to haemoglobin synthesis. Nature. 1974 Oct 4;251(5474):385–388. doi: 10.1038/251385a0. [DOI] [PubMed] [Google Scholar]
  9. Romero J., Sun S. M., McLeester R. C., Bliss F. A., Hall T. C. Heritable Variation in a Polypeptide Subunit of the Major Storage Protein of the Bean, Phaseolus vulgaris L. Plant Physiol. 1975 Dec;56(6):776–779. doi: 10.1104/pp.56.6.776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Shih D. S., Kaesberg P. Translation of brome mosaic viral ribonucleic acid in a cell-free system derived from wheat embryo. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1799–1803. doi: 10.1073/pnas.70.6.1799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Smith K. E., Cannon M., Cundliffe E. Inhibition at the initiation level of eukaryotic protein synthesis by T-2 toxin. FEBS Lett. 1975 Jan 15;50(1):8–12. doi: 10.1016/0014-5793(75)81028-3. [DOI] [PubMed] [Google Scholar]
  12. Sun S. M., Hall T. C. Application of Remazol dye for isolation of protein subunits by preparative SDS-polyacrylamide gel electrophoresis. Anal Biochem. 1974 Sep;61(1):237–242. doi: 10.1016/0003-2697(74)90350-9. [DOI] [PubMed] [Google Scholar]
  13. Sun S. M., Hall T. C. Solubility characteristics of globulins from Phaseolus seeds in regard to their isolation and characterization. J Agric Food Chem. 1975 Mar-Apr;23(2):184–189. doi: 10.1021/jf60198a004. [DOI] [PubMed] [Google Scholar]
  14. Sun S. M., McLeester R. C., Bliss F. A., Hall T. C. Reversible and irreversible dissociation of globulins from Phaseolus vulgaris seed. J Biol Chem. 1974 Apr 10;249(7):2118–2121. [PubMed] [Google Scholar]
  15. Verma D. P., Maclachlan G. A., Byrne H., Ewings D. Regulation and in vitro translation of messenger ribonucleic acid for cellulase from auxin-treated pea epicotyls. J Biol Chem. 1975 Feb 10;250(3):1019–1026. [PubMed] [Google Scholar]
  16. Verma D. P., Nash D. T., Schulman H. M. Isolation and in vitro translation of soybean leghaemoglobin mRNA. Nature. 1974 Sep 6;251(5470):74–77. doi: 10.1038/251074a0. [DOI] [PubMed] [Google Scholar]
  17. Wells G. N., Beevers L. Protein synthesis in the cotyledons of Pisum sativum L. Protein factors involved in the binding of phenylalanyl-transfer ribonucleic acid to ribosomes. Biochem J. 1974 Apr;139(1):61–69. doi: 10.1042/bj1390061. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES