Abstract
Carbamoyl phosphate synthetase of pea shoots (Pisum sativum L.) was purified 101-fold. Its stability was greatly increased by the addition of substrates and activators. The enzyme was strongly inhibited by micromolar amounts of UMP (Ki less than 2 μm). UDP, UTP, TMP, and ADP were also inhibitory. AMP caused either slight activation (under certain conditions) or was inhibitory. Uridine nucleotides were competitive inhibitors, as was AMP, while ADP was a noncompetitive inhibitor. Enzyme activity was increased manyfold by the activator ornithine. Ornithine acted by increasing the affinity for Mg·ATP by a factor of 8 or more. Other activators were IMP, GMP, ITP, and GTP, IMP, like ornithine, increased the Michaelis constant for Mg·ATP. The activators ornithine, GMP, and IMP (but not GTP and ITP) completely reversed inhibition caused by pyrimidine nucleotides while increasing the inhibition caused by ADP and AMP.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abd-el-Al A., Ingraham J. L. Control of carbamyl phosphate synthesis in Salmonella typhimurium. J Biol Chem. 1969 Aug 10;244(15):4033–4038. [PubMed] [Google Scholar]
- Anderson P. M., Marvin S. V. Effect of ornithine, IMP, and UMP on carbamyl phosphate synthetase from Escherichia coli. Biochem Biophys Res Commun. 1968 Sep 30;32(6):928–934. doi: 10.1016/0006-291x(68)90116-2. [DOI] [PubMed] [Google Scholar]
- Anderson P. M., Meister A. Control of Escherichia coli carbamyl phosphate synthetase by purine and pyrimidine nucleotides. Biochemistry. 1966 Oct;5(10):3164–3169. doi: 10.1021/bi00874a013. [DOI] [PubMed] [Google Scholar]
- Carter G. W., Dyke K. V. Scintillation counting: a comparison of the counting efficiencies of serveral aqueous solubilizers. Anal Biochem. 1973 Aug;54(2):624–627. doi: 10.1016/0003-2697(73)90398-9. [DOI] [PubMed] [Google Scholar]
- Gerhart J. C., Holoubek H. The purification of aspartate transcarbamylase of Escherichia coli and separation of its protein subunits. J Biol Chem. 1967 Jun 25;242(12):2886–2892. [PubMed] [Google Scholar]
- Harper E. T. Kinetics of the two-sited enzyme. II. A method of distinguishing between anticooperative and independent active sites based on competitive inhibition. J Theor Biol. 1973 Apr;39(1):91–102. doi: 10.1016/0022-5193(73)90207-5. [DOI] [PubMed] [Google Scholar]
- Herrman J. L., Nordlie P. E., Nordlie R. C. Human liver carbamyl phosphate-glucose phosphotransferase activity: Catalytic properties and physiological phosphorylative potential. FEBS Lett. 1971 Nov 1;18(2):241–244. doi: 10.1016/0014-5793(71)80454-4. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Levine R. L., Hoogenraad N. J., Kretchmer N. Regulation of activity of carbamoyl phosphate synthetase from mouse spleen. Biochemistry. 1971 Sep 28;10(20):3694–3699. doi: 10.1021/bi00796a009. [DOI] [PubMed] [Google Scholar]
- Levine R. L., Kretchmer N. Conversion of carbamoyl phosphate to hydroxyurea. An assay for carbamoylphosphate synthetase. Anal Biochem. 1971 Aug;42(2):324–337. doi: 10.1016/0003-2697(71)90044-3. [DOI] [PubMed] [Google Scholar]
- Mazuś B., Kleczkowski K. Aspartate carbamoyltranspherase in higher plants. Bull Acad Pol Sci Biol. 1965;13(4):207–210. [PubMed] [Google Scholar]
- NEUMANN J., JONES M. E. Aspartic transcarbamylase from lettuce seedings: case of end-product inhibition. Nature. 1962 Aug 18;195:709–710. doi: 10.1038/195709a0. [DOI] [PubMed] [Google Scholar]
- O'Neal D., Naylor A. W. Purine and pyrimidine nucleotide inhibition of carbamyl phosphate synthetase from pea seedlings. Biochem Biophys Res Commun. 1968 May 10;31(3):322–327. doi: 10.1016/0006-291x(68)90478-6. [DOI] [PubMed] [Google Scholar]
- O'Neal T. D., Naylor A. W. Partial purification and properties of carbamoyl phosphate synthetase of Alaska pea (Pisum sativum L. cultivar Alaska). Biochem J. 1969 Jun;113(2):271–279. doi: 10.1042/bj1130271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ong B. L., Jackson J. F. Aspartate transcarbamoylase from Phaseolus aureus. Partial purification and properties. Biochem J. 1972 Sep;129(3):571–581. doi: 10.1042/bj1290571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ong B. L., Jackson J. F. Pyrimidine nucleotide biosynthesis in Phaseolus aureus. Enzymic aspects of the control of carbamoyl phosphate synthesis and utilization. Biochem J. 1972 Sep;129(3):583–593. doi: 10.1042/bj1290583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piérard A. Control of the activity of Escherichia coli carbamoyl phosphate synthetase by antagonistic allosteric effectors. Science. 1966 Dec 23;154(3756):1572–1573. doi: 10.1126/science.154.3756.1572. [DOI] [PubMed] [Google Scholar]
- Sweeny J. R., Fisher J. R. An alternative to allosterism and cooperativity in the interpretation of enzyme kinetic data. Biochemistry. 1968 Feb;7(2):561–565. doi: 10.1021/bi00842a008. [DOI] [PubMed] [Google Scholar]
- Tatibana M., Shigesada K. Control of pyrimidine biosynthesis in mammalian tissues. IV. Requirements of a quantitative assay of glutamine-dependent carbamyl phosphate synthetase and effect of magnesium ion as an essential activator. J Biochem. 1972 Sep;72(3):537–547. doi: 10.1093/oxfordjournals.jbchem.a129933. [DOI] [PubMed] [Google Scholar]
- Trotta P. P., Estis L. F., Meister A., Haschemeyer R. H. Self-association and allosteric properties of glutamine-dependent carbamyl phosphate synthetase. Reversible dissociation to monomeric species. J Biol Chem. 1974 Jan 25;249(2):482–489. [PubMed] [Google Scholar]
- Trotta P. P., Pinkus L. M., Haschemeyer R. H., Meister A. Reversible dissociation of the monomer of glutamine-dependent carbamyl phosphate synthetase into catalytically active heavy and light subunits. J Biol Chem. 1974 Jan 25;249(2):492–499. [PubMed] [Google Scholar]
