Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1976 Jan;57(1):29–37. doi: 10.1104/pp.57.1.29

Attempts to Detect Cyclic Adenosine 3′:5′-Monophosphate in Higher Plants by Three Assay Methods 1,2

Ray A Bressan a, Cleon W Ross a, Jozef Vandepeute b,3
PMCID: PMC541957  PMID: 16659419

Abstract

Endogenous levels of cyclic adenosine-3′:5′-monophosphate in coleoptile first leaf segments of oat (Avena sativa L.), potato (Solanum tuberosum L.) tubers, tobacco (Nicotiana tabacum L.) callus, and germinating seeds of lettuce (Lactuca sativa L.) were measured with a modified Gilman binding assay and a protein kinase activation assay. The incorporation of adenosine-8-14C into compounds with properties similar to those of cyclic AMP was also measured in studies with germinating lettuce seeds. The binding assay proved reliable for mouse and rat liver analyses, but was nonspecific for plant tissues. It responded to various components from lettuce and potato tissues chromatographically similar to but not identical with cyclic AMP. The protein kinase activation assay was much more specific, but it also exhibited positive responses in the presence of compounds not chromatographically identical to cyclic AMP. The concentrations of cyclic AMP in the plant tissues tested were at the lower limits of detection and characterization obtainable with these assays. The estimates of maximal levels were much lower than reported in many previous studies.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brostrom C. O., Kon C. An improved protein binding assay for cyclic AMP. Anal Biochem. 1974 Apr;58(2):459–468. doi: 10.1016/0003-2697(74)90214-0. [DOI] [PubMed] [Google Scholar]
  2. Chassy B. M., Love L. L., Krichevsky M. I. The acrasin activity of 3',5'-cyclic nucleotides. Proc Natl Acad Sci U S A. 1969 Sep;64(1):296–303. doi: 10.1073/pnas.64.1.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Drlica K. A., Gardner J. M., Kado C. I., Vijay I. K., Troy F. A. Cyclic adenosine 3':5'-monophosphate levels in normal and transformed cells of higher plants. Biochem Biophys Res Commun. 1974 Feb 4;56(3):753–759. doi: 10.1016/0006-291x(74)90669-x. [DOI] [PubMed] [Google Scholar]
  4. Ebadi M. S., Weiss B., Costa E. Microassay of adenosine-3',5'-monophosphate (cyclic AMP) in brain and other tissues by the luciferin-luciferase system. J Neurochem. 1971 Feb;18(2):183–192. doi: 10.1111/j.1471-4159.1971.tb00556.x. [DOI] [PubMed] [Google Scholar]
  5. Kessler B., Levinstein R. Adenosine 3',5'-cyclic monophosphate in higher plants: assay, distribution and age-dependency. Biochim Biophys Acta. 1974 Mar 20;343(1):156–166. doi: 10.1016/0304-4165(74)90247-5. [DOI] [PubMed] [Google Scholar]
  6. Kuo J. F., Greengard P. An assay method for cyclic AMP and cyclic GMP based upon their abilities to activate cyclic AMP-dependent and cyclic GMP-dependent protein kinases. Adv Cyclic Nucleotide Res. 1972;2:41–50. [PubMed] [Google Scholar]
  7. Niles R. M., Mount M. S. Failure to Detect Cyclic 3', 5'-Adenosine Monophosphate in Healthy and Crown Gall Tumorous Tissues of Vicia faba. Plant Physiol. 1974 Sep;54(3):372–373. doi: 10.1104/pp.54.3.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ownby J. D., Ross C. W. Studies on the presence of adenosine cyclic 3':5'-monophosphate in oat coleoptiles. Plant Physiol. 1975 Feb;55(2):346–351. doi: 10.1104/pp.55.2.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pollard C. J. Influence of gibberellic acid on the incorporation of 8-14C adenine into adenosine 3',5'-cyclic phosphate in barley aleurone layers. Biochim Biophys Acta. 1970 Mar 24;201(3):511–512. doi: 10.1016/0304-4165(70)90176-5. [DOI] [PubMed] [Google Scholar]
  10. Pradet A., Raymond P., Narayanan A. Confirmation de la présence de l'AMP cyclique dans les semences de laitue, var. reine de mai. C R Acad Sci Hebd Seances Acad Sci D. 1972 Oct 30;275(18):1987–1988. [PubMed] [Google Scholar]
  11. Raymond P., Narayanan A., Pradet A. Evidence for the presence of 3', 5'-cyclic AMP in plant tissues. Biochem Biophys Res Commun. 1973 Aug 21;53(4):1115–1121. doi: 10.1016/0006-291x(73)90580-9. [DOI] [PubMed] [Google Scholar]
  12. Salomon D., Mascarenhas J. P. Auxin-induced synthesis of cyclic 3', 5'-adenosine monophosphate in Avena coleoptiles. Life Sci II. 1971 Aug;10(15):879–885. doi: 10.1016/0024-3205(71)90200-1. [DOI] [PubMed] [Google Scholar]
  13. Walsh D. A., Ashby C. D., Gonzalez C., Calkins D., Fischer E. H. Krebs EG: Purification and characterization of a protein inhibitor of adenosine 3',5'-monophosphate-dependent protein kinases. J Biol Chem. 1971 Apr 10;246(7):1977–1985. [PubMed] [Google Scholar]
  14. Wellburn A. R., Ashby J. P., Wellburn F. A. Occurrence and biosynthesis of adenosine 3',5'-cyclic monophosphate in isolated Avena etioplasts. Biochim Biophys Acta. 1973 Sep 14;320(2):363–371. doi: 10.1016/0304-4165(73)90317-6. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES