Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1976 Jan;57(1):85–87. doi: 10.1104/pp.57.1.85

In Vivo Conversion of 5-Oxoproline to Glutamate by Higher Plants 1

Mendel Mazelis a,2, Helen M Pratt a
PMCID: PMC541968  PMID: 16659431

Abstract

l-(U-14C)-5-oxoproline (pyrollidone carboxylic acid or pyroglutamic acid) was infiltrated into detached leaves of a number of species and incubated for 1 to 6 hours. In every case, conversion to labeled glutamate and glutamine was observed. The amount converted varied from 1 to 64% of the total label fed depending on the species. The ratio of glutamate-14C to glutamine-14C ranged from 5 in Vicia faba to 1 in sugar beet. This ratio could be affected by preinfiltrating various compounds before allowing the uptake of the 5-oxoproline. When l-methionine-dl-sulfoximine was prefed to sugar beet leaves, the glutamate-glutamine ratio increased from 1 to 10. Prior treatment of V. faba leaves with azaserine resulted in essentially only labeled glutamine being recovered. Preinfiltration with NaF or ATP gave similar results in that the glutamate-glutamine ratio was greatly decreased. The results are consistent with glutamate being produced from the 5-oxoproline and then being converted to glutamine.

Full text

PDF
85

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson L. E., McClure W. O. An improved scintillation cocktail of high-solubilizing power. Anal Biochem. 1973 Jan;51(1):173–179. doi: 10.1016/0003-2697(73)90465-x. [DOI] [PubMed] [Google Scholar]
  2. FOWDEN L. THE CHEMISTRY AND METABOLISM OF RECENTLY ISOLATED AMINO ACIDS. Annu Rev Biochem. 1964;33:173–204. doi: 10.1146/annurev.bi.33.070164.001133. [DOI] [PubMed] [Google Scholar]
  3. Lea P. J., Miflin B. J. Alternative route for nitrogen assimilation in higher plants. Nature. 1974 Oct 18;251(5476):614–616. doi: 10.1038/251614a0. [DOI] [PubMed] [Google Scholar]
  4. Leonard R. T., Hodges T. K. Characterization of Plasma Membrane-associated Adenosine Triphosphase Activity of Oat Roots. Plant Physiol. 1973 Jul;52(1):6–12. doi: 10.1104/pp.52.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Meister A. On the enzymology of amino acid transport. Science. 1973 Apr 6;180(4081):33–39. doi: 10.1126/science.180.4081.33. [DOI] [PubMed] [Google Scholar]
  6. Meister A. The specificity of glutamine synthetase and its relationship to substrate conformation at the active site. Adv Enzymol Relat Areas Mol Biol. 1968;31:183–218. doi: 10.1002/9780470122761.ch5. [DOI] [PubMed] [Google Scholar]
  7. Messer M., Ottesen M. Isolation and properties of glutamine cyclotransferase of dried papaya latex. C R Trav Lab Carlsberg. 1965;35(1):1–24. [PubMed] [Google Scholar]
  8. Miflin B. J., Lea P. J. Glutamine and asparagine as nitrogen donors for reductant-dependent glutamate synthesis in pea roots. Biochem J. 1975 Aug;149(2):403–409. doi: 10.1042/bj1490403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Orlowski M., Richman P. G., Meister A. Isolation and properties of gamma-L-glutamylcyclotransferase from human brain. Biochemistry. 1969 Mar;8(3):1048–1055. doi: 10.1021/bi00831a036. [DOI] [PubMed] [Google Scholar]
  10. Ronzio R. A., Meister A. Phosphorylation of methionine sulfoximine by glutamine synthetase. Proc Natl Acad Sci U S A. 1968 Jan;59(1):164–170. doi: 10.1073/pnas.59.1.164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Van der Werf P., Orlowski M., Meister A. Enzymatic conversion of 5-oxo-L-proline (L-pyrrolidone carboxylate) to L-glutamate coupled with cleavage of adenosine triphosphate to adenosine diphosphate, a reaction in the -glutamyl cycle. Proc Natl Acad Sci U S A. 1971 Dec;68(12):2982–2985. doi: 10.1073/pnas.68.12.2982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES