Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1976 Feb;57(2):179–184. doi: 10.1104/pp.57.2.179

Galactolipid Synthesis in Vicia faba Leaves

II. Formation and Desaturation of Long Chain Fatty Acids in Phosphatidylcholine, Phosphatidylglycerol, and the Galactolipids 1

John P Williams a, Garry R Watson a, Stephen P K Leung a
PMCID: PMC541987  PMID: 16659446

Abstract

The labeling kinetics of the fatty acids of phosphatidylcholine (PC), phosphatidylglycerol (PG), monogalactosyldiglyceride (MGDG), and digalactosyldiglyceride (DGDG) were examined after 14CO2 feeding and incubation of leaf discs of Vicia faba over 72 hours in continuous light. The results indicate a rapid accumulation and turnover of radioactivity into PC and PG fatty acids (oleic acid in PC and oleic and palmitic acids in PG). Radioactivity accumulates in MGDG and DGDG fatty acids much more slowly and continuously over 72 hours. Most of this activity is found in linoleic and linolenic acids; very little activity is found in the more saturated fatty acids. Little or no desaturation occurs in situ in conjunction with the galactolipids. The results suggest that PC and PG may act as “carriers” for MGDG and DGDG fatty acid synthesis. Analyses of the labeling patterns of the molecular species of MGDG after 14CO2 and 14C-acetate feeding confirm that MGDG is formed by galactosylation of a preformed diglyceride containing predominantly unsaturated fatty acids.

Full text

PDF
179

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appleby R. S., Safford R., Nichols B. W. The involvement of lecithin and monogalactosyl diglyceride in linoleate synthesis by green and blue-green algae. Biochim Biophys Acta. 1971 Nov 5;248(2):205–211. doi: 10.1016/0005-2760(71)90008-7. [DOI] [PubMed] [Google Scholar]
  2. Gurr M. I., Brawn P. The biosynthesis of polyunsaturated fatty acids by photosynthetic tissue. The composition of phosphatidyl choline species in Chlorella vulgaris during the formation of linoleic acid. Eur J Biochem. 1970 Nov;17(1):19–22. doi: 10.1111/j.1432-1033.1970.tb01126.x. [DOI] [PubMed] [Google Scholar]
  3. Gurr M. I., Robinson M. P., James A. T. The mechanism of formation of polyunsaturated fatty acids by photosynthetic tissue. The tight coupling of oleate desaturation with phospholipid synthesis in Chlorella vulgaris. Eur J Biochem. 1969 May 1;9(1):70–78. doi: 10.1111/j.1432-1033.1969.tb00577.x. [DOI] [PubMed] [Google Scholar]
  4. Harris R. V., James A. T. Linoleic and alpha-linolenic acid biosynthesis in plant leaves and green alga. Biochim Biophys Acta. 1965 Dec 2;106(3):456–464. doi: 10.1016/0005-2760(65)90062-7. [DOI] [PubMed] [Google Scholar]
  5. JAMES A. T. The biosynthesis of long-chain saturated and unsaturated fatty acids in isolated plant leaves. Biochim Biophys Acta. 1963 Feb 19;70:9–19. doi: 10.1016/0006-3002(63)90714-5. [DOI] [PubMed] [Google Scholar]
  6. Jacobson B. S., Kannangara C. G., Stumpf P. K. Biosynthesis of -linolenic acid by disrupted spinach chloroplasts. Biochem Biophys Res Commun. 1973 Mar 17;51(2):487–493. doi: 10.1016/0006-291x(73)91283-7. [DOI] [PubMed] [Google Scholar]
  7. Kannangara C. G., Jacobson B. S., Stumpf P. K. Fat Metabolism in Higher Plants: LVII. A Comparison of Fatty Acid-Synthesizing Enzymes in Chloroplasts Isolated from Mature and Immature Leaves of Spinach. Plant Physiol. 1973 Aug;52(2):156–161. doi: 10.1104/pp.52.2.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kannangara C. G., Stumpf P. K. Fat metabolism in higher plants. I. The biosynthesis of polyunsaturated fatty acids by isolated spinach chloroplasts. Arch Biochem Biophys. 1972 Feb;148(2):414–424. doi: 10.1016/0003-9861(72)90159-2. [DOI] [PubMed] [Google Scholar]
  9. MUDD J. B., McMANUS T. T. Metabolism of acetate by cellfree preparations from spinach leaves. J Biol Chem. 1962 Jul;237:2057–2063. [PubMed] [Google Scholar]
  10. Mudd J. B., van Vliet H. H., van Deenen L. L. Biosynthesis of galactolipids by enzyme preparations from spinach leaves. J Lipid Res. 1969 Nov;10(6):623–630. [PubMed] [Google Scholar]
  11. Nichols B. W., Moorhouse R. The separation, structure and metabolism of monogalactosyl diglyceride species in Chlorella vulgaris. Lipids. 1969 Sep;4(5):311–316. doi: 10.1007/BF02530998. [DOI] [PubMed] [Google Scholar]
  12. Roughan P. G. Turnover of the glycerolipids of pumpkin leaves. The importence of phosphatidylcholine. Biochem J. 1970 Mar;117(1):1–8. doi: 10.1042/bj1170001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. STUMPF P. K., JAMES A. T. The biosynthesis of long-chain fatty acids by lettuce chloroplast preparations. Biochim Biophys Acta. 1963 Feb 19;70:20–32. doi: 10.1016/0006-3002(63)90715-7. [DOI] [PubMed] [Google Scholar]
  14. Safford R., Nichols B. W. Positional distribution of fatty acids in monogalactosyl diglyceride fractions from leaves and algae. Structural and metabolic studies. Biochim Biophys Acta. 1970 Jun 9;210(1):57–64. doi: 10.1016/0005-2760(70)90061-5. [DOI] [PubMed] [Google Scholar]
  15. Williams J. P., Khan M., Leung S. Biosynthesis of digalactosyl diglyceride in Vicia faba leaves. J Lipid Res. 1975 Jan;16(1):61–66. [PubMed] [Google Scholar]
  16. Williams J. P., Watson G. R., Khan M. U., Leung S. Galactolipid Synthesis in Vicia faba Leaves: I. Galactose, Glycerol, and Fatty Acid Labeling after CO(2) Feeding. Plant Physiol. 1975 Jun;55(6):1038–1042. doi: 10.1104/pp.55.6.1038. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES