Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1976 Apr;57(4):568–571. doi: 10.1104/pp.57.4.568

Induction of Deoxyribonucleic Acid Synthesis in Potato Tuber Slices

Role of Protein Synthesis 1

Akira Watanabe a, Hidemasa Imaseki a
PMCID: PMC542074  PMID: 16659528

Abstract

Timing of protein synthesis which is a prerequisite to DNA synthesis induced in potato tuber tissue (Solanum tuberosum L.) by cut injury has been studied using cycloheximide. The induction of DNA synthesis which was measured by incorporation of 3H-thymidine was completely inhibited when the inhibitor was applied to the tuber discs immediately after slicing. When the application of cycloheximide was delayed for 6 hours or more after slicing, DNA synthesis was observed but its rate was reduced to 20% of control. The inhibitory effect of cycloheximide, however, rapidly decreased when the inhibitor was applied at 6 or less hours immediately prior to determination of DNA synthesis. The effect of cycloheximide on the incorporation of 14C-leucine suggests that the change in the effect of cycloheximide on the induction of DNA synthesis is not due to incomplete inhibition of protein synthesis. Cycloheximide did not have significant effects on either uptake or phosphorylation of 3H-thymidine in the discs. Inhibition of both protein and DNA synthesis by cycloheximide was reversed by washing and further incubation of the discs. Almost no qualitative difference was detected by buoyant density analysis between DNA formed under inhibition of protein synthesis of the later stage and DNA synthesized under normal conditions. These results suggest that DNA synthesis induced in potato tuber tissue by cut injury requires continuous synthesis of new protein molecules in a characteristically programmed sequence.

Full text

PDF
568

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOLLUM F. J., POTTER V. R. Nucleic acid metabolism in regenerating rat liver. VI. Soluble enzymes which convert thymidine to thymidine phosphates and DNA. Cancer Res. 1959 Jun;19(5):561–565. [PubMed] [Google Scholar]
  2. Borchert R., McChesney J. D. Time course and localization of DNA synthesis during wound healing of potato tuber tissue. Dev Biol. 1973 Dec;35(2):293–301. doi: 10.1016/0012-1606(73)90025-0. [DOI] [PubMed] [Google Scholar]
  3. Borchert R., McChesney J. D., Watson D. Wound healing in potato tuber tissue: phosphon inhibition of developmental processes requiring protein synthesis. Plant Physiol. 1974 Feb;53(2):187–191. doi: 10.1104/pp.53.2.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CANELLAKIS E. S., JAFFE J. J., MANTSAVINOS R., KRAKOW J. S. Pyrimidine metabolism. IV. A comparison of normal and regenerating rat liver. J Biol Chem. 1959 Aug;234(8):2096–2099. [PubMed] [Google Scholar]
  5. CLICK R. E., HACKETT D. P. THE ROLE OF PROTEIN AND NUCLEIC ACID SYNTHESIS IN THE DEVELOPMENT OF RESPIRATION IN POTATO TUBER SLICES. Proc Natl Acad Sci U S A. 1963 Aug;50:243–250. doi: 10.1073/pnas.50.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. EDELMAN J., HALL M. A. ENZYME FORMATION IN HIGHER-PLANT TISSUES. DEVELOPMENT OF INVERTASE AND ASCORBATE-OXIDASE ACTIVITIES IN MATURE STORAGE TISSUE OF HELIANTHUS TUBEROSUS L. Biochem J. 1965 May;95:403–410. doi: 10.1042/bj0950403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gautschi J. R., Kern R. M. DNA replication in mammalian cells in the presence of cycloheximide. Exp Cell Res. 1973 Jul;80(1):15–26. doi: 10.1016/0014-4827(73)90270-x. [DOI] [PubMed] [Google Scholar]
  8. Grossman L. I., Goldring E. S., Marmur J. Preferential synthesis of yeast mitochondrial DNA in the absence of protein synthesis. J Mol Biol. 1969 Dec 28;46(3):367–376. doi: 10.1016/0022-2836(69)90182-x. [DOI] [PubMed] [Google Scholar]
  9. Harland J., Jackson J. F., Yeoman M. M. Changes in some enzymes involved in DNA biosynthesis following induction of division in cultured plant cells. J Cell Sci. 1973 Jul;13(1):121–138. doi: 10.1242/jcs.13.1.121. [DOI] [PubMed] [Google Scholar]
  10. Hartwell L. H., Vogt M., Dulbecco R. Induction of cellular DNA synthesis by polyoma virus. II. Increase in the rate of enzyme synthesis after infection with polyoma virus in mouse kidney cells. Virology. 1965 Nov;27(3):262–272. doi: 10.1016/0042-6822(65)90105-4. [DOI] [PubMed] [Google Scholar]
  11. Ingle J., Pearson G. G., Sinclair J. Species distribution and properties of nuclear satellite DNA in higher plants. Nat New Biol. 1973 Apr 18;242(120):193–197. doi: 10.1038/newbio242193a0. [DOI] [PubMed] [Google Scholar]
  12. Kára J., Weil R. Specific activation of the DNA-synthesizing apparatus in contact-inhibited mouse kidney cells by polyoma virus. Proc Natl Acad Sci U S A. 1967 Jan;57(1):63–70. doi: 10.1073/pnas.57.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Loeb L. A., Agarwal S. S., Woodside A. M. Induction of DNA polymerase in human lymphocytes by phytohemagglutinin. Proc Natl Acad Sci U S A. 1968 Nov;61(3):827–834. doi: 10.1073/pnas.61.3.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MALEY F., MALEY G. F. The presence of deoxycytidylate deaminase in normal adult rat liver. Biochim Biophys Acta. 1961 Feb 12;47:181–183. doi: 10.1016/0006-3002(61)90845-9. [DOI] [PubMed] [Google Scholar]
  15. Matsushita K., Uritani I. Change in invertase activity of sweet potato in response to wounding and purification and properties of its invertases. Plant Physiol. 1974 Jul;54(1):60–66. doi: 10.1104/pp.54.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McMahon D. Cycloheximide is not a specific inhibitor of protein synthesis in vivo. Plant Physiol. 1975 May;55(5):815–821. doi: 10.1104/pp.55.5.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. SAITO H., MIURA K. I. PREPARATION OF TRANSFORMING DEOXYRIBONUCLEIC ACID BY PHENOL TREATMENT. Biochim Biophys Acta. 1963 Aug 20;72:619–629. [PubMed] [Google Scholar]
  18. Shannon L. M., Uritani I., Imaseki H. De novo synthesis of peroxidase isozymes in sweet potato slices. Plant Physiol. 1971 Apr;47(4):493–498. doi: 10.1104/pp.47.4.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Watanabe A., Imaseki H. Induction of deoxyribonucleic Acid synthesis in potato tuber tissue by cutting. Plant Physiol. 1973 Apr;51(4):772–776. doi: 10.1104/pp.51.4.772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Weintraub H., Holtzer H. Fine control of DNA synthesis in developing chick red blood cells. J Mol Biol. 1972 Apr 28;66(1):13–35. doi: 10.1016/s0022-2836(72)80003-2. [DOI] [PubMed] [Google Scholar]
  21. Wells R., Ingle J. The constancy of the buoyant density of chloroplast and mitochondrial deoxyribonucleic acids in a range of higher plants. Plant Physiol. 1970 Jul;46(1):178–179. doi: 10.1104/pp.46.1.178. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES