Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1976 Apr;57(4):580–582. doi: 10.1104/pp.57.4.580

Isotope Discrimination by Ribulose 1,5-Diphosphate Carboxylase

No Effect of Temperature or HCO3 Concentration 1

John T Christeller a, William A Laing a, John H Troughton b
PMCID: PMC542077  PMID: 16659531

Abstract

Carbon 13 isotope discrimination by ribulose 1,5-diphosphate carboxylase from soybean (Glycine max [Merr.] cv. Amsoy) was studied as a function of temperature, bicarbonate concentration, and pH. None of these factors affected the degree of discrimination against 13C. The average δ13C was −28.3%, a value close to that found for whole C3 plants. The zero temperature response observed here with ribulose 1,5-diphosphate carboxylase corroborates data from whole plants. The lack of effect of bicarbonate concentration on discrimination is consistent with both current theories of alternate forms of carboxylase.

Full text

PDF
580

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bahr J. T., Jensen R. G. Ribulose Diphosphate Carboxylase from Freshly Ruptured Spinach Chloroplasts Having an in Vivo Km[CO(2)]. Plant Physiol. 1974 Jan;53(1):39–44. doi: 10.1104/pp.53.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bowes G., Ogren W. L. Oxygen inhibition and other properties of soybean ribulose 1,5-diphosphate carboxylase. J Biol Chem. 1972 Apr 10;247(7):2171–2176. [PubMed] [Google Scholar]
  3. Cooper T. G., Filmer D. The active species of "CO2" utilized by ribulose diphosphate carboxylase. J Biol Chem. 1969 Feb 10;244(3):1081–1083. [PubMed] [Google Scholar]
  4. Garg L. C., Maren T. H. The rates of hydration of carbon dioxide and dehydration of carbonic acid at 37 degrees. Biochim Biophys Acta. 1972 Jan 28;261(1):70–76. doi: 10.1016/0304-4165(72)90315-7. [DOI] [PubMed] [Google Scholar]
  5. Good N. E., Izawa S. Hydrogen ion buffers. Methods Enzymol. 1972;24:53–68. doi: 10.1016/0076-6879(72)24054-x. [DOI] [PubMed] [Google Scholar]
  6. Laing W. A., Ogren W. L., Hageman R. H. Bicarbonate stabilization of ribulose 1,5-diphosphate carboxylase. Biochemistry. 1975 May 20;14(10):2269–2275. doi: 10.1021/bi00681a035. [DOI] [PubMed] [Google Scholar]
  7. Sackett W. M., Eckelmann W. R., Bender M. L., Bé A. W. Temperature Dependence of Carbon Isotope Composition in Marine Plankton and Sediments. Science. 1965 Apr 9;148(3667):235–237. doi: 10.1126/science.148.3667.235. [DOI] [PubMed] [Google Scholar]
  8. Taylor A. O., Slack C. R., McPherson H. G. Plants under Climatic Stress: VI. Chilling and Light Effects on Photosynthetic Enzymes of Sorghum and Maize. Plant Physiol. 1974 Nov;54(5):696–701. doi: 10.1104/pp.54.5.696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Troughton J. H., Wells P. V., Mooney H. A. Photosynthetic Mechanisms and Paleoecology from Carbon Isotope Ratios in Ancient Specimens of C4 and CAM Plants. Science. 1974 Aug 16;185(4151):610–612. doi: 10.1126/science.185.4151.610. [DOI] [PubMed] [Google Scholar]
  10. Whelan T., Sackett W. M. Enzymatic fractionation of carbon isotopes by phosphoenolpyruvate carboxylase from c(4) plants. Plant Physiol. 1973 Jun;51(6):1051–1054. doi: 10.1104/pp.51.6.1051. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES