Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1976 Apr;57(4):583–588. doi: 10.1104/pp.57.4.583

Trypsin-induced ATPase Activity in Potato Mitochondria 1

Dennis W Jung a, George G Laties a
PMCID: PMC542078  PMID: 16659532

Abstract

Potato mitochondria (Solanum tuberosum var. Russet Burbank), which readily phosphorylate ADP in oxidative phosphorylation, show low levels of ATPase activity which is stimulated neither by Mg2+, 2,4-dinitrophenol, incubation with respiratory substrates, nor disruption by sonication or treatment with Triton X-100, individually or in concert. Treatment of disrupted potato mitochondria with trypsin stimulates Mg2+-dependent, oligomycin-sensitive ATPase activity 10- to 15-fold, suggesting the presence of an ATPase inhibitor protein. Trypsin-induced ATPase activity was unaffected by uncoupler. Oligomycin-sensitive ATPase activity decreases as exposure to trypsin is increased. Incubation at alkaline pH or heating at 60 C for 2 minutes also activates ATPase of sonicated potato mitochondria. Disruption of cauliflower (Brassica oleracea), red sweet potato (Ipomoea batatas), and carrot (Daucus carota) mitochondria increases ATPase activity, which is further enhanced by treatment with trypsin. The significance of the tight association of the inhibitor protein and ATPase in potato mitochondria is not clear.

Full text

PDF
583

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asami K., Juniti K., Ernster L. Possible regulatory function of a mitochondrial ATPase inhibitor in respiratory chain-linked energy transfer. Biochim Biophys Acta. 1970;205(2):307–311. doi: 10.1016/0005-2728(70)90261-6. [DOI] [PubMed] [Google Scholar]
  2. CHANCE B., WILLIAMS G. R. A method for the localization of sites for oxidative phosphorylation. Nature. 1955 Aug 6;176(4475):250–254. doi: 10.1038/176250a0. [DOI] [PubMed] [Google Scholar]
  3. Horstman L. L., Racker E. Partial resolution of the enzyme catalyzing oxidative phosphorylation. XXII. Interaction between mitochondrial adenosine triphosphatase inhibitor and mitochondrial adenosine triphosphatase. J Biol Chem. 1970 Mar 25;245(6):1336–1344. [PubMed] [Google Scholar]
  4. Jung D. W., Hanson J. B. Activation of 2,4-dinitrophenol-stimulated ATPase activity in cauliflower and corn mitochondria. Arch Biochem Biophys. 1975 Jun;168(2):358–368. doi: 10.1016/0003-9861(75)90264-7. [DOI] [PubMed] [Google Scholar]
  5. Jung D. W., Hanson J. B. Respiratory activation of 2,4-dinitrophenol-stimulated ATPase activity in plant mitochondria. Arch Biochem Biophys. 1973 Sep;158(1):139–148. doi: 10.1016/0003-9861(73)90606-1. [DOI] [PubMed] [Google Scholar]
  6. Klingenberg M. Metabolite transport in mitochondria: an example for intracellular membrane function. Essays Biochem. 1970;6:119–159. [PubMed] [Google Scholar]
  7. LARDY H. A., JOHNSON D., McMURRAY W. C. Antibiotics as tools for metabolic studies. I. A survey of toxic antibiotics in respiratory, phosphorylative and glycolytic systems. Arch Biochem Biophys. 1958 Dec;78(2):587–597. doi: 10.1016/0003-9861(58)90383-7. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Laties G. G. The potentiating effect of adenosine diphosphate in the uncoupling of oxidative phosphorylation in potato mitochondria. Biochemistry. 1973 Aug 14;12(17):3350–3355. doi: 10.1021/bi00741a032. [DOI] [PubMed] [Google Scholar]
  10. Lotlikar P. D., Remmert L. F. Intermediate reactions of oxidative phosphorylation in mitochondria from cabbage. Plant Physiol. 1968 Mar;43(3):327–332. doi: 10.1104/pp.43.3.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MacLennan D. H., Tzagoloff A. Studies on the mitochondrial adenosine triphosphatase system. IV. Purification and characterization of the oligomycin sensitivity conferring protein. Biochemistry. 1968 Apr;7(4):1603–1610. doi: 10.1021/bi00844a050. [DOI] [PubMed] [Google Scholar]
  12. Nieuwenhuis F. J., van der Drift J. A., Voet A. B., Van Dam K. Evidence for a naturally occurring ATPase-inhibitor in Escherichia coli. Biochim Biophys Acta. 1974 Dec 19;368(3):461–463. doi: 10.1016/0005-2728(74)90192-3. [DOI] [PubMed] [Google Scholar]
  13. Olson A. O., Spencer M. Studies on the mechanism of action of ethylene. II. Effects of ethylene on mitochondria from rat liver and yeast, and on mitochondrial adenosine triphosphatase. Can J Biochem. 1968 Mar;46(3):283–288. doi: 10.1139/o68-041. [DOI] [PubMed] [Google Scholar]
  14. PULLMAN M. E., MONROY G. C. A NATURALLY OCCURRING INHIBITOR OF MITOCHONDRIAL ADENOSINE TRIPHOSPHATASE. J Biol Chem. 1963 Nov;238:3762–3769. [PubMed] [Google Scholar]
  15. PULLMAN M. E., PENEFSKY H. S., DATTA A., RACKER E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. I. Purification and properties of soluble dinitrophenol-stimulated adenosine triphosphatase. J Biol Chem. 1960 Nov;235:3322–3329. [PubMed] [Google Scholar]
  16. Passam H. C., Palmer J. M. The ATPase activity of Jerusalem-artichoke mitochondria and submitochondrial particles. Biochim Biophys Acta. 1973 Apr 27;305(1):80–87. doi: 10.1016/0005-2728(73)90233-8. [DOI] [PubMed] [Google Scholar]
  17. RACKER E. A mitochondrial factor conferring oligomycin sensitivity on soluble mitochondrial ATPase. Biochem Biophys Res Commun. 1963 Mar 25;10:435–439. doi: 10.1016/0006-291x(63)90375-9. [DOI] [PubMed] [Google Scholar]
  18. Racker E., Horstman L. L. Partial resolution of the enzymes catalyzing oxidative phosphorylation. 13. Structure and function of submitochondrial particles completely resolved with respect to coupling factor. J Biol Chem. 1967 May 25;242(10):2547–2551. [PubMed] [Google Scholar]
  19. Reid H. B., Gentile A. C., Klein R. M. Adenosine Triphosphatase Activity of Cauliflower Mitochondria. Plant Physiol. 1964 Nov;39(6):1020–1023. doi: 10.1104/pp.39.6.1020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Takeuchi Y. Respiration-department uncoupler-stimulated ATPase activity in castor bean endosperm mitochondria and submitochondrial particles. Biochim Biophys Acta. 1975 Mar 20;376(3):505–518. doi: 10.1016/0005-2728(75)90171-1. [DOI] [PubMed] [Google Scholar]
  21. VAMBUTAS V. K., RACKER E. PARTIAL RESOLUTION OF THE ENZYMES CATALYZINE PHOTOPHOSPHORYLATION. I. STIMULATION OF PHOTOPHOSPHORYLATION BY A PREPARATION OF A LATENT, CA++- DEPENDENT ADENOSINE TRIPHOSPHATASE FROM CHLOROPLASTS. J Biol Chem. 1965 Jun;240:2660–2667. [PubMed] [Google Scholar]
  22. van de Stadt R. J., de Boer B. L., van Dam K. The interaction between the mitochondrial ATPase (F 1 ) and the ATPase inhibitor. Biochim Biophys Acta. 1973 Feb 22;292(2):338–349. doi: 10.1016/0005-2728(73)90040-6. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES