Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1976 Aug;58(2):199–202. doi: 10.1104/pp.58.2.199

Intracellular Localization of Glycolate Dehydrogenase in a Blue-Green Alga 1

Bernard Grodzinski a,2, Brian Colman a,3
PMCID: PMC542212  PMID: 16659647

Abstract

Glycolate dehydrogenase activity was detected in cell-free extracts of Oscillatoria sp. prepared by osmotic lysis of spheroplasts in 0.05 m potassium phosphate buffer, pH 7.5, containing 0.3 m mannitol. Most of the enzyme activity was found in a particulate fraction and localized in the photosynthetic lamellae after centrifugation in a discontinuous sucrose density gradient. Enzyme activity was detected in this fraction both in the presence and absence of the artificial electron acceptor 2,6-dichlorophenolindophenol (DPIP) and a low rate of O2 uptake was detected in this lamellar fraction. Activity was lost from the lamellar fraction by repeated washing or by treatment with 0.005% Triton X-100 and the solubilized enzyme activity was DPIP-dependent. The data indicate that both glycolate dehydrogenase and its natural electron acceptor are bound to the photosynthetic lamellae in vivo. In contrast, catalase activity was found in the soluble cytoplasmic fraction.

Full text

PDF
199

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biggins J. Preparation of Metabolically Active Protoplasts and Particle Preparations from the Blue-Green Alga, Phormidium luridum. Plant Physiol. 1967 Oct;42(10):1442–1446. doi: 10.1104/pp.42.10.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Biggins J. Respiration in blue-green algae. J Bacteriol. 1969 Aug;99(2):570–575. doi: 10.1128/jb.99.2.570-575.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bisalputra T., Brown D. L., Weier T. E. Possible respiratory sites in a blue-green alga Nostoc sphaericum as demonstrated by potassium tellurite and tetranitro-blue tetrazolium reduction. J Ultrastruct Res. 1969 Apr;27(2):182–197. [PubMed] [Google Scholar]
  4. Chua N. H. The methyl viologen-catalyzed Mehler reaction and catalase activity in blue-green algae and Chlamydomonas reinhardi. Biochim Biophys Acta. 1971 Sep 7;245(2):277–287. doi: 10.1016/0005-2728(71)90146-0. [DOI] [PubMed] [Google Scholar]
  5. Codd G. A., Stewart W. D. Pathways of glycollate metabolism in the blue-green alga Anabaena cylindrica. Arch Mikrobiol. 1973 Dec 4;94(1):11–28. doi: 10.1007/BF00414075. [DOI] [PubMed] [Google Scholar]
  6. ELLS H. A. A colorimetric method for the assay of soluble succinic dehydrogenase and pyridinenucleotide-linked dehydrogenases. Arch Biochem Biophys. 1959 Dec;85:561–562. doi: 10.1016/0003-9861(59)90527-2. [DOI] [PubMed] [Google Scholar]
  7. Ginzberg D., Padan E. Light effect on the internal osmotic pressure of the blue-green algae Plectonema boryanum and Phormidium luridum. Arch Mikrobiol. 1972;87(2):181–183. doi: 10.1007/BF00424999. [DOI] [PubMed] [Google Scholar]
  8. Grodzinski B., Colman B. Glycolic Acid Oxidase Activity in Cell-free Preparations of Blue-Green Algae. Plant Physiol. 1970 Jun;45(6):735–737. doi: 10.1104/pp.45.6.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Halliwell B., Butt V. S. Oxidative decarboxylation of glycollate and glyoxylate by leaf peroxisomes. Biochem J. 1974 Feb;138(2):217–224. doi: 10.1042/bj1380217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KELLENBERGER E., RYTER A., SECHAUD J. Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J Biophys Biochem Cytol. 1958 Nov 25;4(6):671–678. doi: 10.1083/jcb.4.6.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. MYERS J., KRATZ W. A. Relation between pigment content and photosynthetic characteristics in a blue-green algae. J Gen Physiol. 1955 Sep 20;39(1):11–22. doi: 10.1085/jgp.39.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sallal A. K., Codd G. A. The intracellular localization of the glycollate-oxidising enzyme of Anabaena cylindrica. FEBS Lett. 1975 Aug 15;56(2):230–234. doi: 10.1016/0014-5793(75)81098-2. [DOI] [PubMed] [Google Scholar]
  15. ZELITCH I., OCHOA S. Oxidation and reduction of glycolic and glyoxylic acids in plants. I. Glycolic and oxidase. J Biol Chem. 1953 Apr;201(2):707–718. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES