Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1976 Aug;58(2):232–236. doi: 10.1104/pp.58.2.232

Effects of Inhibitors of RNA and Protein Synthesis on Aspartate Transcarbamylase Activity in Etiolated Plant Tissue 1

Lowell B Johnson a, Charles L Niblett a, Richard F Lee a
PMCID: PMC542218  PMID: 16659653

Abstract

Aspartate transcarbamylase (ATCase) activity declines in etiolated cowpea (Vigna unguiculata L. Walp.) and soybean (Glycine max L. Merr.) hypocotyls between 3 and 11 days after planting. Treating cow-pea hypocotyls with cycloheximide (CH), actinomycin D (AMD), 6-methyl purine (6-MP), or cordycepin increases ATCase activity up to 740, 350, 465, and 305%, respectively, over water-treated controls 48 to 72 hours after treatment. In contrast erythromycin had no effect, and d-threo-chloramphenicol (CHL) reduced ATCase activity nearly 40%. CH, AMD, and CHL, whose effects were further characterized, each markedly reduced total RNA synthesis and protein synthesis. Respiration was stimulated by CH and AMD and reduced by CHL. In soybean, CHL-treated tissues and water-treated controls had comparable ATCase activities 48 hours after treatment, while AMD, 6-MP, and CH treatments reduced activities 29, 37, and 78%, respectively. The results suggest that the level of ATCase activity in etiolated cowpea hypocotyls is regulated by a mechanism or mechanisms that are interfered with by inhibition of RNA and protein synthesis. Possibly the mechanism is absent from etiolated soybean hypocotyls.

Full text

PDF
232

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achar B. S., Savithri H. S., Vaidyanathan C. S., Rao N. A. Studies on plant aspartate transcarbamylase. Purification and properties of the enzyme from mung-bean (Phaseolus aureus) seedlings. Eur J Biochem. 1974 Aug 15;47(1):15–22. doi: 10.1111/j.1432-1033.1974.tb03662.x. [DOI] [PubMed] [Google Scholar]
  2. Cline M. G., Rehm M. M. Rapid Inhibition of Auxin-induced Elongation of Avena Coleoptile Segments by Cordycepin. Plant Physiol. 1974 Aug;54(2):160–163. doi: 10.1104/pp.54.2.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Delseny M., Teresa M., Guitton Y. Effects of cordycepin on RNA metabolism in germinating seedlings. Biochem Biophys Res Commun. 1975 Jun 16;64(4):1278–1285. doi: 10.1016/0006-291x(75)90831-1. [DOI] [PubMed] [Google Scholar]
  4. Ellis R. J., Macdonald I. R. Specificity of cycloheximide in higher plant systems. Plant Physiol. 1970 Aug;46(2):227–232. doi: 10.1104/pp.46.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Filner P., Varner J. E., Wray J. L. Environmental or developmental changes cause many enzyme activities of higher plants to rise or fall. Science. 1969 Jul 25;165(3891):358–367. doi: 10.1126/science.165.3891.358. [DOI] [PubMed] [Google Scholar]
  6. HANSON J. B., HODGES T. K. UNCOUPLING ACTION OF CHLORAMPHENICOL AS A BASIS FOR THE INHIBITION OF ION ACCUMULATION. Nature. 1963 Dec 7;200:1009–1009. doi: 10.1038/2001009a0. [DOI] [PubMed] [Google Scholar]
  7. Honig G. R., Rabinovitz M. Actinomycin D: inhibition of protein synthesis unrelated to effect on template RNA synthesis. Science. 1965 Sep 24;149(3691):1504–1506. doi: 10.1126/science.149.3691.1504. [DOI] [PubMed] [Google Scholar]
  8. Johnson L. B., Niblett C. L., Shively O. D. Asparate transcarbamylase activity in etiolated cowpea hypocotyls treated with 2,4-dichlorophenoxyacetic Acid. Plant Physiol. 1973 Feb;51(2):318–321. doi: 10.1104/pp.51.2.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Key J. L., Shannon J. C. Enhancement by Auxin of Ribonucleic Acid Synthesis in Excised Soybean Hypocotyl Tissue. Plant Physiol. 1964 May;39(3):360–364. doi: 10.1104/pp.39.3.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Laszlo J., Miller D. S., McCarty K. S., Hochstein P. Actinomycin D: inhibition of respiration and glycolysis. Science. 1966 Feb 25;151(3713):1007–1010. doi: 10.1126/science.151.3713.1007. [DOI] [PubMed] [Google Scholar]
  12. Mitchell J. L., Sedory M. J. Cycloheximide induced in vivo modification of ornithine decarboxylase in Physarum polycephalum. FEBS Lett. 1974 Dec 1;49(1):120–124. doi: 10.1016/0014-5793(74)80646-0. [DOI] [PubMed] [Google Scholar]
  13. NEUMANN J., JONES M. E. Aspartic transcarbamylase from lettuce seedings: case of end-product inhibition. Nature. 1962 Aug 18;195:709–710. doi: 10.1038/195709a0. [DOI] [PubMed] [Google Scholar]
  14. O'Donovan G. A., Neuhard J. Pyrimidine metabolism in microorganisms. Bacteriol Rev. 1970 Sep;34(3):278–343. doi: 10.1128/br.34.3.278-343.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ong B. L., Jackson J. F. Aspartate transcarbamoylase from Phaseolus aureus. Partial purification and properties. Biochem J. 1972 Sep;129(3):571–581. doi: 10.1042/bj1290571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Reger B. J., Smillie R. M., Fuller R. C. Protein synthesis by isolated etioplasts and chloroplasts from pea and wheat and the effects of chloramphenicol and cycloheximide. Plant Physiol. 1972 Jul;50(1):19–23. doi: 10.1104/pp.50.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ross C. Effects of Cycloheximide upon Formation of Ribonucleic Acid Cytidylic and Uridylic Acids. Plant Physiol. 1974 Apr;53(4):635–637. doi: 10.1104/pp.53.4.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ross C., Murray M. G. Development of Pyrimidine-metabolizing Enzymes in Cotyledons of Germinating Peas. Plant Physiol. 1971 Nov;48(5):626–630. doi: 10.1104/pp.48.5.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. STEIN L. I., COHEN P. P. CORRELATION OF GROWTH AND ASPARTATE TRANSCARBAMYLASE ACTIVITY IN HIGHER PLANTS. Arch Biochem Biophys. 1965 Mar;109:429–433. doi: 10.1016/0003-9861(65)90386-3. [DOI] [PubMed] [Google Scholar]
  20. Yon R. J. Wheat-germ aspartate transcarbamoylase. Kinetic behaviour suggesting an allosteric mechanism of regulation. Biochem J. 1972 Jun;128(2):311–320. doi: 10.1042/bj1280311. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES