Abstract
Experimental evidence is reviewed which shows that the cell membrane is compressible by both mechanical and electrical forces. Calculations are given which show that significant changes in the thickness of cell membranes can occur as a result of (a) direct compression due to the turgor pressure; (b) indirect effects due to the stretching of the cell wall; and (c) the stresses induced by the electric field in the membrane.
Such changes in the membrane thickness may provide the pressure-transducing mechanism required for osmoregulation and growth. An important feature of the model is that this pressure transduction can occur not only in the plasmalemma (where there is a pressure gradient), but also in the tonoplast.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ben-Amotz A., Avron M. The Role of Glycerol in the Osmotic Regulation of the Halophilic Alga Dunaliella parva. Plant Physiol. 1973 May;51(5):875–878. doi: 10.1104/pp.51.5.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benz R., Fröhlich O., Läuger P., Montal M. Electrical capacity of black lipid films and of lipid bilayers made from monolayers. Biochim Biophys Acta. 1975 Jul 3;394(3):323–334. doi: 10.1016/0005-2736(75)90287-4. [DOI] [PubMed] [Google Scholar]
- Berezin I. V., Klibanov A. M., Martinek K. The mechanochemistry of immobilized enzymes. How to steer a chemical process at the molecular level by a mechanical device. Biochim Biophys Acta. 1974 Oct 17;364(2):193–199. doi: 10.1016/0005-2744(74)90003-5. [DOI] [PubMed] [Google Scholar]
- Coster H. G., Simmermann U. The mechanism of electrical breakdown in the membranes of Valonai utricularis. J Membr Biol. 1975 Jun 3;22(1):73–90. doi: 10.1007/BF01868164. [DOI] [PubMed] [Google Scholar]
- Coster H. G., Zimmermann U. Dielectric breakdown in the membranes of Valonia utricularis. The role of energy dissipation. Biochim Biophys Acta. 1975 Mar 25;382(3):410–418. doi: 10.1016/0005-2736(75)90281-3. [DOI] [PubMed] [Google Scholar]
- Green P. B., Erickson R. O., Buggy J. Metabolic and physical control of cell elongation rate: in vivo studies in nitella. Plant Physiol. 1971 Mar;47(3):423–430. doi: 10.1104/pp.47.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gutknecht J. Ion fluxes and short-circuit current in internally perfused cells of Valonia ventricosa. J Gen Physiol. 1967 Aug;50(7):1821–1834. doi: 10.1085/jgp.50.7.1821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kauss H. Turnover of galactosylglycerol and osmotic balance in ochromonas. Plant Physiol. 1973 Dec;52(6):613–615. doi: 10.1104/pp.52.6.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Letter: Lenses and the compression of black lipid membranes by an electric field. Biophys J. 1975 Jan;15(1):77–81. doi: 10.1016/S0006-3495(75)85793-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Philip J. R. The Osmotic Cell, Solute Diffusibility, and the Plant Water Economy. Plant Physiol. 1958 Jul;33(4):264–271. doi: 10.1104/pp.33.4.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RAND R. P., BURTON A. C. MECHANICAL PROPERTIES OF THE RED CELL MEMBRANE. I. MEMBRANE STIFFNESS AND INTRACELLULAR PRESSURE. Biophys J. 1964 Mar;4:115–135. doi: 10.1016/s0006-3495(64)86773-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riemann F., Zimmermann U., Pilwat G. Release and uptake of haemoglobin and ions in red blood cells induced by dielectric breakdown. Biochim Biophys Acta. 1975 Jul 3;394(3):449–462. doi: 10.1016/0005-2736(75)90296-5. [DOI] [PubMed] [Google Scholar]
- Steudle E., Zimmermann U. Hydraulische Leitfähigkeit von Valonia utricularis. Z Naturforsch B. 1971 Dec;26(12):1302–1311. [PubMed] [Google Scholar]
- Steudle E., Zimmermann U. Zellturgor und selektiver Ionentransport bei Chaetomorpha linum. Z Naturforsch B. 1971 Dec;26(12):1276–1282. doi: 10.1515/znb-1971-1216. [DOI] [PubMed] [Google Scholar]
- Zimmermann U., Pilwat G., Riemann F. Dielectric breakdown of cell membranes. Biophys J. 1974 Nov;14(11):881–899. doi: 10.1016/S0006-3495(74)85956-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmermann U., Schulz J., Pilwat G. Transcellular ion flow in Escherichia coli B and electrical sizing of bacterias. Biophys J. 1973 Oct;13(10):1005–1013. doi: 10.1016/S0006-3495(73)86041-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmermann U., Steudle E., Lelkes P. I. Turgor Pressure Regulation in Valonia utricularis: Effect of Cell Wall Elasticity and Auxin. Plant Physiol. 1976 Nov;58(5):608–613. doi: 10.1104/pp.58.5.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmermann U., Steudle E. The pressure-dependence of the hydraulic conductivity, the membrane resistance and membrane potential during turgor pressure regulation in Valonia utricularis. J Membr Biol. 1974;16(4):331–352. doi: 10.1007/BF01872422. [DOI] [PubMed] [Google Scholar]