Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1976 Dec;58(6):719–721. doi: 10.1104/pp.58.6.719

Synthesis of Proteins by Isolated Euglena gracilis Chloroplasts 1

Aurea C Vasconcelos a
PMCID: PMC542294  PMID: 16659752

Abstract

Intact Euglena gracilis chloroplasts, which had been purified on gradients of silica sol, incorporated [35S]methionine or [3H]leucine into soluble and membrane-bound products, using light as the only source of energy. The chloroplasts were osmotically shocked, fractionated on discontinuous gradients of sucrose, and the products of protein synthesis of the different fractions characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The soluble fraction resolved into three zones of radioactivity, the major one corresponding to the large subunit or ribulose diphosphate carboxylase. The thylakoid membrane fraction contained nine labeled polypeptides, the two most prominent in the region of 31 and 42 kilodaltons. The envelope fraction contained a major radioactive peak of about 48 kilodaltons and four other minor peaks. The patterns of protein synthesis by isolated Euglena chloroplasts are broadly similar to those observed with chloroplasts of spinach and pea.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blair G. E., Ellis R. J. Protein synthesis in chloroplasts. I. Light-driven synthesis of the large subunit of fraction I protein by isolated pea chloroplasts. Biochim Biophys Acta. 1973 Aug 24;319(2):223–234. doi: 10.1016/0005-2787(73)90013-0. [DOI] [PubMed] [Google Scholar]
  3. Boardman N. K., Francki R. I., Wildman S. G. Protein synthesis by cell-free extracts of tobacco leaves. 3. Comparison of the physical properties and protein synthesizing activities of 70 s chloroplast and 80 s cytoplasmic ribosomes. J Mol Biol. 1966 Jun;17(2):470–487. doi: 10.1016/s0022-2836(66)80157-2. [DOI] [PubMed] [Google Scholar]
  4. Bogorad L., Mets L. J., Mullinix K. P., Smith H. J., Strain G. C. Possibilities for intracellular integration: The ribonucleic acid polymerases of chloroplasts and nuclei, and genes specifying chloroplast ribosomal proteins. Biochem Soc Symp. 1973;(38):17–41. [PubMed] [Google Scholar]
  5. Bottomley W., Spencer D., Whitfeld P. R. Protein synthesis in isolated spinach chloroplasts: comparison of light-driven and ATP-driven synthesis. Arch Biochem Biophys. 1974 Sep;164(1):106–117. doi: 10.1016/0003-9861(74)90012-5. [DOI] [PubMed] [Google Scholar]
  6. Chen J. L., Wildman S. G. "Free" and membrane-bound ribosomes, and nature of products formed by isolated tobacco chloroplasts incubated for protein synthesis. Biochim Biophys Acta. 1970 May 21;209(1):207–219. doi: 10.1016/0005-2787(70)90677-5. [DOI] [PubMed] [Google Scholar]
  7. Harris E. H., Preston J. F., Eisenstadt J. M. Amino acid incorporation and products of protein synthesis in isolated chloroplasts of Euglena gracilis. Biochemistry. 1973 Mar 13;12(6):1227–1234. doi: 10.1021/bi00730a033. [DOI] [PubMed] [Google Scholar]
  8. Hartley M. R., Wheeler A., Ellis R. J. Protein synthesis in chloroplasts. V. Translation of messenger RNA for the large subunit of fraction I protein in a heterologous cell-free system. J Mol Biol. 1975 Jan 5;91(1):67–77. doi: 10.1016/0022-2836(75)90372-1. [DOI] [PubMed] [Google Scholar]
  9. Hoober J. K. A major polypeptide of chloroplast membranes of Chlamydomonas reinhardi. Evidence for synthesis in the cytoplasm as a soluble component. J Cell Biol. 1972 Jan;52(1):84–96. doi: 10.1083/jcb.52.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hoober J. K. Sites of synthesis of chloroplast membrane polypeptides in Chlamydomonas reinhardi y-1. J Biol Chem. 1970 Sep 10;245(17):4327–4334. [PubMed] [Google Scholar]
  11. Ingle J. Synthesis and Stability of Chloroplast Ribosomal-RNA's. Plant Physiol. 1968 Sep;43(9):1448–1454. doi: 10.1104/pp.43.9.1448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Joy K. W., Ellis R. J. Protein synthesis in chloroplasts. IV. Polypeptides of the chloroplast envelope. Biochim Biophys Acta. 1975 Jan 6;378(1):143–151. doi: 10.1016/0005-2787(75)90145-8. [DOI] [PubMed] [Google Scholar]
  13. Margulies M. M., Parenti F. In vitro Protein Synthesis by Plastids of Phaseolus vulgaris. III. Formation of Lamellar and Soluble Chloroplast Protein. Plant Physiol. 1968 Apr;43(4):504–514. doi: 10.1104/pp.43.4.504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mendiola-Morgenthaler L. R., Morgenthaler J. J., Price C. A. Synthesis of coupling factor CF1 protein by isolated spinach chloroplasts. FEBS Lett. 1976 Feb 1;62(1):96–100. doi: 10.1016/0014-5793(76)80025-7. [DOI] [PubMed] [Google Scholar]
  15. Morgenthaler J. J., Mendiola-Morgenthaler L. Synthesis of soluble, thylakoid, and envelope membrane proteins by spinach chloroplasts purified from gradients. Arch Biochem Biophys. 1976 Jan;172(1):51–58. doi: 10.1016/0003-9861(76)90046-1. [DOI] [PubMed] [Google Scholar]
  16. Salisbury J. L., Vasconcelos A. C., Floyd G. L. Isolation of Intact Chloroplasts of Euglena gracilis by Isopycnic Sedimentation in Gradients of Silica. Plant Physiol. 1975 Sep;56(3):399–403. doi: 10.1104/pp.56.3.399. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES