Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1977 Jan;59(1):33–37. doi: 10.1104/pp.59.1.33

Photophosphorylation Associated with Photosystem II

I. Photosystem II Cyclic Photophosphorylation Catalyzed by p-Phenylenediamine

Charles F Yocum 1, James A Guikema 1
PMCID: PMC542325  PMID: 16659783

Abstract

Incubation of spinach chloroplast membranes for 90 minutes in the presence of 50 mm KCN and 100 μm HgCl2 produces an inhibition of photosystem I activity which is stable to washing and to storage of the chloroplasts at −70 C. Subsequent exposure of these preparations to NH2OH and ethylenediaminetetraacetic acid destroys O2 evolution and flow of electrons from water to oxidized p-phenylenediamine, but two types of phosphorylating cyclic electron flow can still be observed. In the presence of 3-(3,4-dichlorophenyl)-1,1′-dimethylurea, phenazinemethosulfate catalyzes ATP synthesis at a rate 60% that observed in uninhibited chloroplasts. C-Substituted p-phenylenediamines will also support low rates of photosystem I-catalyzed cyclic photophosphorylation, but p-phenylenediamine is completely inactive. When photosystem II is not inhibited, p-phenylenediamine will catalyze ATP synthesis at rates up to 90 μmol/hr·mg chlorophyll. This reaction is unaffected by anaerobiosis, and an action spectrum for ATP synthesis shows a peak at 640 nm. These results are interpreted as evidence for the existence of photosystem II-dependent cyclic photophosphorylation in these chloroplast preparations.

Full text

PDF
33

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ben-Hayyim G., Drechsler Z., Goffer J., Neumann J. Diaminobenzidine an electron donor to photosystem 1 and to photosystem 2 in chloroplasts. Eur J Biochem. 1975 Mar 3;52(1):135–141. doi: 10.1111/j.1432-1033.1975.tb03981.x. [DOI] [PubMed] [Google Scholar]
  3. Bradeen D. A., Winget G. D. Site-specific Inhibition of Photophosphorylation in Isolated Spinach Chloroplasts by Mercuric Chloride. Plant Physiol. 1973 Dec;52(6):680–682. doi: 10.1104/pp.52.6.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gould J. M. The phosphorylation site associated with the oxidation of exogenous donors of electrons to photosystem I. Biochim Biophys Acta. 1975 Apr 14;387(1):135–148. doi: 10.1016/0005-2728(75)90058-4. [DOI] [PubMed] [Google Scholar]
  5. Guikema J. A., Yocum C. F. The mechanism of quinonediimine acceptor activity in photosynthetic electron transport. Biochemistry. 1976 Jan 27;15(2):362–367. doi: 10.1021/bi00647a019. [DOI] [PubMed] [Google Scholar]
  6. Hauska G., Reimer S., Trebst A. Native and artificial energy-conserving sites in cyclic photophosphorylation systems. Biochim Biophys Acta. 1974 Jul 25;357(1):1–13. doi: 10.1016/0005-2728(74)90106-6. [DOI] [PubMed] [Google Scholar]
  7. Izawa S., Gould J. M., Ort D. R., Felker P., Good N. E. Electron transport and photophosphorylation in chloroplasts as a function of the electron acceptor. 3. A dibromothymoquinone-insensitive phosphorylation reaction associated with photosystem II. Biochim Biophys Acta. 1973 Apr 27;305(1):119–128. doi: 10.1016/0005-2728(73)90237-5. [DOI] [PubMed] [Google Scholar]
  8. Joliot P., Joliot A., Kok B. Analysis of the interactions between the two photosystems in isolated chloroplasts. Biochim Biophys Acta. 1968 Apr 2;153(3):635–652. doi: 10.1016/0005-2728(68)90191-6. [DOI] [PubMed] [Google Scholar]
  9. Kimimura M., Kato S. Studies on electron transport associated with photosystem I. I. Functional site of plastocyanin: inhibitory effects of HgCl 2 on electron transport and plastocyanin in chloroplasts. Biochim Biophys Acta. 1972 Nov 17;283(2):279–292. doi: 10.1016/0005-2728(72)90244-7. [DOI] [PubMed] [Google Scholar]
  10. Ort D. R., Izawa S. Studies on the Energy-coupling Sites of Photophosphorylation: II. Treatment of Chloroplasts with NH(2)OH Plus Ethylenediaminetetraacetate to Inhibit Water Oxidation while Maintaining Energy-coupling Efficiencies. Plant Physiol. 1973 Dec;52(6):595–600. doi: 10.1104/pp.52.6.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ort D. R., Izawa S. Studies on the Energy-coupling Sites of Photophosphorylation: V. Phosphorylation Efficiencies (P/e(2)) Associated with Aerobic Photooxidation of Artificial Electron Donors. Plant Physiol. 1974 Mar;53(3):370–376. doi: 10.1104/pp.53.3.370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ouitrakul R., Izawa S. Electron transport and photophosphorylation in chloroplasts as a function of the electron acceptor. II. Acceptor-specific inhibition by KCN. Biochim Biophys Acta. 1973 Apr 27;305(1):105–118. doi: 10.1016/0005-2728(73)90236-3. [DOI] [PubMed] [Google Scholar]
  13. Saha S., Ouitrakul R., Izawa S., Good N. E. Electron transport and photophosphorylation in chloroplasts as a function of the electron acceptor. J Biol Chem. 1971 May 25;246(10):3204–3209. [PubMed] [Google Scholar]
  14. Trebst A., Reimer S. Properties of photoreductions by photosystem II in isolated chloroplasts. An energy-conserving step in the photoreduction of benzoquinones by photosystem II in the presence of dibromothymoquinone. Biochim Biophys Acta. 1973 Apr 27;305(1):129–139. doi: 10.1016/0005-2728(73)90238-7. [DOI] [PubMed] [Google Scholar]
  15. Yamashita T., Butler W. L. Photoreduction and photophosphorylation with tris-washed chloroplasts. Plant Physiol. 1968 Dec;43(12):1978–1986. doi: 10.1104/pp.43.12.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Yocum C. F. Photosystem II - mediated cyclic photophosphorylation. Biochem Biophys Res Commun. 1976 Feb 9;68(3):828–835. doi: 10.1016/0006-291x(76)91220-1. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES