Abstract
A comparison was made of the circular dichroism (C.D.) spectra of Chlorella, Euglena, and Anacystis cells and thylakoids. Analyses of the spectra reveal that these C.D. bands are similar to those observed previously in whole spinach choloroplasts and subchloroplast particles. C.D. spectra of Euglena chloroplasts show bands at longer wavelengths than previously reported. From comparisons of circular dichroism spectra and fine structure, it was concluded that: (a) bands seen in circular dichroism spectra were not the result of light scattering from thylakoid membranes; and (b) bands seen in the C.D. spectra of nonmembranous systems (previously reported) could account for circular dichroism of algae. We also concluded that comparisons would have to be made with model systems in order to correct for effects of absorption flattening, concentration obscuring, and differential light scattering of membranous systems.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BROWN J. S., FRENCH C. S. The long wavelength forms of chlorophyll a. Biophys J. 1961 Sep;1:539–550. doi: 10.1016/s0006-3495(61)86907-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brody M., Brody S. S., Levine J. H. Fluorescence changes during chlorophyll formation in Euglena gracilis (and other organisms) and an estimate of lamellar area as a function of age. J Protozool. 1965 Aug;12(3):465–476. doi: 10.1111/j.1550-7408.1965.tb03243.x. [DOI] [PubMed] [Google Scholar]
- Brody M., Nathanson B. Direct and indirect mechanisms of deaggregation by fatty acids in chlorophyll-countaining systems. Biophys J. 1972 Jul;12(7):774–790. doi: 10.1016/s0006-3495(72)86121-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cogdell R. J., Parson W. W., Kerr M. A. The type, amount, location, and energy transfer properties of the carotenoid in reaction centers from Rhodopseudomonas sphaeroides. Biochim Biophys Acta. 1976 Apr 9;430(1):83–93. doi: 10.1016/0005-2728(76)90224-3. [DOI] [PubMed] [Google Scholar]
- Coggeshall R. E. A fine structural analysis of the ventral nerve cord and associated sheath of Lumbricus terrestris L. J Comp Neurol. 1965 Dec;125(3):393–437. doi: 10.1002/cne.901250308. [DOI] [PubMed] [Google Scholar]
- Cohen-Bazire G., Lefort-Tran M. Fixation of phycobiliproteins to photosynthetic membranes by glutaraldehyde. Arch Mikrobiol. 1970;71(3):245–257. doi: 10.1007/BF00410158. [DOI] [PubMed] [Google Scholar]
- Cohen W. S., Nathanson B., White J. E., Brody M. Fatty acids as model systems for the action of Ricinus leaf extract on higher plant chloroplasts and algae. Arch Biochem Biophys. 1969 Dec;135(1):21–27. doi: 10.1016/0003-9861(69)90511-6. [DOI] [PubMed] [Google Scholar]
- Dratz E. A., Schultz A. J., Sauer K. Chlorophyll-chlorophyll interactions. Brookhaven Symp Biol. 1966;19:303–318. [PubMed] [Google Scholar]
- Geacintov N. E., van Nostrand F., Becker J. F. Polarized light spectroscopy of photosynthetic membranes in magneto-oriented whole cells and chloroplasts. Fluorescence and dichroism. Biochim Biophys Acta. 1974 Jun 28;347(3):443–463. doi: 10.1016/0005-2728(74)90082-6. [DOI] [PubMed] [Google Scholar]
- Gregory R. P., Raps S. The differential scattering of circularly polarized light by chloroplasts and evaluation of their true circular dichroism. Biochem J. 1974 Aug;142(2):193–201. doi: 10.1042/bj1420193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KASHA M. ENERGY TRANSFER MECHANISMS AND THE MOLECULAR EXCITON MODEL FOR MOLECULAR AGGREGATES. Radiat Res. 1963 Sep;20:55–70. [PubMed] [Google Scholar]
- Ludlow C. J., Park R. B. Action Spectra for Photosystems I and II in Formaldehyde Fixed Algae. Plant Physiol. 1969 Apr;44(4):540–543. doi: 10.1104/pp.44.4.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PIRSON A., RUPPEL H. G. [On the induction of inhibition of division in synchronous cultures of Chlorella]. Arch Mikrobiol. 1962;42:299–309. [PubMed] [Google Scholar]
- Pecci J., Fujimori E. Mercurial-induced circular dichroism changes of phycoerythrin and phycocyanin. Biochim Biophys Acta. 1969;188(2):230–236. doi: 10.1016/0005-2795(69)90070-1. [DOI] [PubMed] [Google Scholar]
- Philipson K. D., Sauer K. Light-scattering effects on the circular dichroism of chloroplasts. Biochemistry. 1973 Aug 28;12(18):3454–3458. doi: 10.1021/bi00742a015. [DOI] [PubMed] [Google Scholar]
- Quinlan K. P. Aggregation of chlorophylls in aqueous-formamide solutions. Arch Biochem Biophys. 1968 Sep 20;127(1):31–36. doi: 10.1016/0003-9861(68)90197-5. [DOI] [PubMed] [Google Scholar]
- Schmitz R., Bauer-Stäb G., Braunitzer G. Isolierung der Proteinkomponenten des Lamellarsystems der Chloroplasten. Z Naturforsch B. 1968 Feb;23(2):284–285. [PubMed] [Google Scholar]
- Thornber J. P. Comparison of a chlorophyll a- protein complex isolated from a blue-green alga with chlorophyll-protein complexes obtained from green bacteria and higher plants. Biochim Biophys Acta. 1969 Feb 25;172(2):230–241. doi: 10.1016/0005-2728(69)90066-8. [DOI] [PubMed] [Google Scholar]

