Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1977 Feb;59(2):264–267. doi: 10.1104/pp.59.2.264

Adenosine Triphosphatase from Soybean Callus and Root Cells

Donald L Hendrix 1, Ralph M Kennedy 1
PMCID: PMC542378  PMID: 16659830

Abstract

The ATPase activity of a membrane fraction from soybean (Glycine max L.) root and callus cells, presumed to be enriched in plasma membrane, has been characterized with respect to ion stimulation, pH requirement, and nucleotide specificity. The enzyme from both sources was activated by divalent cations (Mg2+ > Mn2+ > Zn2+ > Ca2+ > Sr2+) and further stimulated by monovalent salts. Preparations from root cells were stimulated by monovalent ions according to the sequence: K+ > Rb+ > Choline+ > Na+ > Li+ > NH4+ > Cs+ > tris+. Membrane preparations from callus cells showed similar stimulatory patterns except for a slight preference for Na+ over K+. No synergism between K+ and Na+ was found with preparations from either cell source.

The pH optimum for ATP hydrolysis in the presence of 50 mm KCl and 3 mm MgSO4 was 6.5 for both preparations and slightly higher in the presence of 3 mm MgSO4 alone. The order of nucleotide preference was found to be: ATP ≫ ADP > GTP > CTP > UTP. Maximal glucan synthetase activity at high (1 mm), but not at low (1 μm), substrate was found to be coincident with the position of this fraction on the sucrose gradient.

Full text

PDF
264

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fisher J. D., Hansen D., Hodges T. K. Correlation between ion fluxes and ion-stimulated adenosine triphosphatase activity of plant roots. Plant Physiol. 1970 Dec;46(6):812–814. doi: 10.1104/pp.46.6.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hardin J. W., Cherry J. H., Morré D. J., Lembi C. A. Enhancement of RNA polymerase activity by a factor released by auxin from plasma membrane. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3146–3150. doi: 10.1073/pnas.69.11.3146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hodges T. K., Leonard R. T., Bracker C. E., Keenan T. W. Purification of an ion-stimulated adenosine triphosphatase from plant roots: association with plasma membranes. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3307–3311. doi: 10.1073/pnas.69.11.3307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hodges T. K., Leonard R. T. Purification of a plasma membrane-bound adenosine triphosphatase from plant roots. Methods Enzymol. 1974;32:392–406. doi: 10.1016/0076-6879(74)32039-3. [DOI] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Leonard R. T., Hansen D., Hodges T. K. Membrane-bound Adenosine Triphosphatase Activities of Oat Roots. Plant Physiol. 1973 Apr;51(4):749–754. doi: 10.1104/pp.51.4.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Leonard R. T., Hodges T. K. Characterization of Plasma Membrane-associated Adenosine Triphosphase Activity of Oat Roots. Plant Physiol. 1973 Jul;52(1):6–12. doi: 10.1104/pp.52.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Leonard R. T., Vanderwoude W. J. Isolation of plasma membranes from corn roots by sucrose density gradient centrifugation: an anomalous effect of ficoll. Plant Physiol. 1976 Jan;57(1):105–114. doi: 10.1104/pp.57.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. PENNINGTON R. J. Biochemistry of dystrophic muscle. Mitochondrial succinate-tetrazolium reductase and adenosine triphosphatase. Biochem J. 1961 Sep;80:649–654. doi: 10.1042/bj0800649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Van Der Woude W. J., Lembi C. A., Morré D. J. beta-Glucan Synthetases of Plasma Membrane and Golgi Apparatus from Onion Stem. Plant Physiol. 1974 Sep;54(3):333–340. doi: 10.1104/pp.54.3.333. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES