Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Jul;87(13):4951–4955. doi: 10.1073/pnas.87.13.4951

Bovine heart fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase: complete amino acid sequence and localization of phosphorylation sites.

J Sakata 1, K Uyeda 1
PMCID: PMC54239  PMID: 2164212

Abstract

We have shown previously that bovine heart fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase (EC 2.7.1.105/3.1.3.46) is phosphorylated by cAMP-dependent protein kinase and protein kinase C; phosphorylation results in activation of kinase. This activation of heart enzyme is in contrast to results with the liver isozyme, in which phosphorylation by cAMP-dependent protein kinase inhibits the kinase activity. As an initial step toward understanding this difference between the isozymes we have determined the DNA sequence of the heart enzyme and analyzed the amino acid sequence with special emphasis on the location of the phosphorylation site. We isolated and sequenced two overlapping cDNA fragments, which together could encode the complete amino acid sequence of bovine heart fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase, a protein of 530 amino acids, with a calculated molecular weight of 60,679. Since the deduced protein contained amino acid sequences identical to the sequences of four known tryptic peptides from this enzyme we concluded that the deduced protein sequence did represent bovine heart enzyme. In addition, a cDNA fragment hybridized to a 4-kilobase mRNA from bovine heart. The phosphorylation sites of the heart enzyme were located near the C terminus, whereas the phosphorylation site of the liver isozyme is known to be located near the N terminus. These opposite locations of the phosphorylation sites may explain the contrasting effect of the covalent modification on the enzymes' activities.

Full text

PDF
4951

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Algaier J., Uyeda K. Molecular cloning, sequence analysis, and expression of a human liver cDNA coding for fructose-6-P,2-kinase:fructose-2,6-bisphosphatase. Biochem Biophys Res Commun. 1988 May 31;153(1):328–333. doi: 10.1016/s0006-291x(88)81226-9. [DOI] [PubMed] [Google Scholar]
  2. Bazan J. F., Fletterick R. J., Pilkis S. J. Evolution of a bifunctional enzyme: 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9642–9646. doi: 10.1073/pnas.86.24.9642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Darville M. I., Crepin K. M., Vandekerckhove J., Van Damme J., Octave J. N., Rider M. H., Marchand M. J., Hue L., Rousseau G. G. Complete nucleotide sequence coding for rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase derived from a cDNA clone. FEBS Lett. 1987 Nov 30;224(2):317–321. doi: 10.1016/0014-5793(87)80476-3. [DOI] [PubMed] [Google Scholar]
  4. El-Maghrabi M. R., Claus T. H., Pilkis J., Fox E., Pilkis S. J. Regulation of rat liver fructose 2,6-bisphosphatase. J Biol Chem. 1982 Jul 10;257(13):7603–7607. [PubMed] [Google Scholar]
  5. El-Maghrabi M. R., Claus T. H., Pilkis J., Pilkis S. J. Partial purification of a rat liver enzyme that catalyzes the formation of fructose 2,6-bisphosphate. Biochem Biophys Res Commun. 1981 Aug 14;101(3):1071–1077. doi: 10.1016/0006-291x(81)91858-1. [DOI] [PubMed] [Google Scholar]
  6. Furuya E., Uyeda K. A novel enzyme catalyzes the synthesis of activation factor from ATP and D-fructose-6-P. J Biol Chem. 1981 Jul 25;256(14):7109–7112. [PubMed] [Google Scholar]
  7. Furuya E., Yokoyama M., Uyeda K. An enzyme that catalyzes hydrolysis of fructose-2, 6-bisphosphate. Biochem Biophys Res Commun. 1982 Mar 15;105(1):264–270. doi: 10.1016/s0006-291x(82)80040-5. [DOI] [PubMed] [Google Scholar]
  8. Furuya E., Yokoyama M., Uyeda K. Regulation of fructose-6-phosphate 2-kinase by phosphorylation and dephosphorylation: possible mechanism for coordinated control of glycolysis and glycogenolysis. Proc Natl Acad Sci U S A. 1982 Jan;79(2):325–329. doi: 10.1073/pnas.79.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kitajima S., Thomas H., Uyeda K. Effect of modification of lysine residues of fructose-6-phosphate 2-kinase:fructose-2,6-bisphosphatase with pyridoxal 5'-phosphate. J Biol Chem. 1985 Nov 15;260(26):13995–14002. [PubMed] [Google Scholar]
  10. Kitamura K., Kangawa K., Matsuo H., Uyeda K. Phosphorylation of myocardial fructose-6-phosphate,2-kinase: fructose-2,6-bisphosphatase by cAMP-dependent protein kinase and protein kinase C. Activation by phosphorylation and amino acid sequences of the phosphorylation sites. J Biol Chem. 1988 Nov 15;263(32):16796–16801. [PubMed] [Google Scholar]
  11. Kitamura K., Uyeda K., Hartman F. C., Kangawa K., Matsuo H. Catalytic site of rat liver and bovine heart fructose-6-phosphate,2-kinase:fructose-2,6-bisphosphatase. Identification of fructose 6-phosphate binding site. J Biol Chem. 1989 Apr 15;264(11):6344–6348. [PubMed] [Google Scholar]
  12. Kitamura K., Uyeda K. Purification and characterization of myocardial fructose-6-phosphate,2-kinase and fructose-2,6-bisphosphatase. J Biol Chem. 1988 Jun 25;263(18):9027–9033. [PubMed] [Google Scholar]
  13. Kitamura K., Uyeda K. The mechanism of activation of heart fructose 6-phosphate,2-kinase:fructose-2,6-bisphosphatase. J Biol Chem. 1987 Jan 15;262(2):679–681. [PubMed] [Google Scholar]
  14. Kozak M. Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes. Nucleic Acids Res. 1981 Oct 24;9(20):5233–5252. doi: 10.1093/nar/9.20.5233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lively M. O., el-Maghrabi M. R., Pilkis J., D'Angelo G., Colosia A. D., Ciavola J. A., Fraser B. A., Pilkis S. J. Complete amino acid sequence of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. J Biol Chem. 1988 Jan 15;263(2):839–849. [PubMed] [Google Scholar]
  16. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  17. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  18. Narabayashi H., Lawson J. W., Uyeda K. Regulation of phosphofructokinase in perfused rat heart. Requirement for fructose 2,6-bisphosphate and a covalent modification. J Biol Chem. 1985 Aug 15;260(17):9750–9758. [PubMed] [Google Scholar]
  19. Rider M. H., Foret D., Hue L. Comparison of purified bovine heart and rat liver 6-phosphofructo-2-kinase. Evidence for distinct isoenzymes. Biochem J. 1985 Oct 1;231(1):193–196. doi: 10.1042/bj2310193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sakakibara R., Kitajima S., Uyeda K. Differences in kinetic properties of phospho and dephospho forms of fructose-6-phosphate, 2-kinase and fructose 2,6-bisphosphatase. J Biol Chem. 1984 Jan 10;259(1):41–46. [PubMed] [Google Scholar]
  21. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sprang S. R., Acharya K. R., Goldsmith E. J., Stuart D. I., Varvill K., Fletterick R. J., Madsen N. B., Johnson L. N. Structural changes in glycogen phosphorylase induced by phosphorylation. Nature. 1988 Nov 17;336(6196):215–221. doi: 10.1038/336215a0. [DOI] [PubMed] [Google Scholar]
  23. Stewart H. B., el-Maghrabi M. R., Pilkis S. J. Evidence for a phosphoenzyme intermediate in the reaction pathway of rat hepatic fructose-2,6-bisphosphatase. J Biol Chem. 1985 Oct 25;260(24):12935–12941. [PubMed] [Google Scholar]
  24. Taniyama M., Kitamura K., Thomas H., Lawson J. W., Uyeda K. Isozymes of fructose 6-phosphate,2-kinase:fructose-2,6-bisphosphatase in rat and bovine heart, liver, and skeletal muscle. Biochem Biophys Res Commun. 1988 Dec 30;157(3):949–954. doi: 10.1016/s0006-291x(88)80966-5. [DOI] [PubMed] [Google Scholar]
  25. Van Schaftingen E., Davies D. R., Hers H. G. Inactivation of phosphofructokinase 2 by cyclic AMP - dependent protein kinase. Biochem Biophys Res Commun. 1981 Nov 16;103(1):362–368. doi: 10.1016/0006-291x(81)91701-0. [DOI] [PubMed] [Google Scholar]
  26. Van Schaftingen E., Hers H. G. Phosphofructokinase 2: the enzyme that forms fructose 2,6-bisphosphate from fructose 6-phosphate and ATP. Biochem Biophys Res Commun. 1981 Aug 14;101(3):1078–1084. doi: 10.1016/0006-291x(81)91859-3. [DOI] [PubMed] [Google Scholar]
  27. Van Schaftingen E., Hers H. G. Purification and properties of phosphofructokinase 2/fructose 2,6-bisphosphatase from chicken liver and from pigeon muscle. Eur J Biochem. 1986 Sep 1;159(2):359–365. doi: 10.1111/j.1432-1033.1986.tb09876.x. [DOI] [PubMed] [Google Scholar]
  28. el-Maghrabi M. R., Claus T. H., Pilkis J., Pilkis S. J. Regulation of 6-phosphofructo-2-kinase activity by cyclic AMP-dependent phosphorylation. Proc Natl Acad Sci U S A. 1982 Jan;79(2):315–319. doi: 10.1073/pnas.79.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. el-Maghrabi M. R., Correia J. J., Heil P. J., Pate T. M., Cobb C. E., Pilkis S. J. Tissue distribution, immunoreactivity, and physical properties of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5005–5009. doi: 10.1073/pnas.83.14.5005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. van Schaftingen E., Davies D. R., Hers H. G. Fructose-2,6-bisphosphatase from rat liver. Eur J Biochem. 1982 May;124(1):143–149. doi: 10.1111/j.1432-1033.1982.tb05917.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES