Abstract
Contrast-induced acute kidney injury (CI-AKI) is one of the most common causes of AKI in clinical practice. CI-AKI has been found to be strongly associated with morbidity and mortality of the patients. Furthermore, CI-AKI may not be always reversible and it may be associated with the development of chronic kidney disease. Pathophysiology of CI-AKI is not exactly understood and there is no consensus on the preventive strategies. CI-AKI is an active research area thus clinicians should be updated periodically about this topic. In this review, we aimed to discuss the indications of contrast-enhanced imaging, types of contrast media and their impact on nephrotoxicity, major pathophysiological mechanisms, risk factors and preventive strategies of CI-AKI and alternative non-contrast-enhanced imaging methods.
Keywords: Angiography, Nephrotoxicity, Computed tomography, Contrast-induced acute kidney injury, Contrast media, Cholesterol embolization syndrome, Hemodialysis, Contrast nephropathy
Core tip: The best preventive measure of contrast-induced acute kidney injury is to avoid unnecessary contrast administration which requires a good knowledge of indications and risk factors of contrast-enhanced imaging. Recently, alternative non-contrast-enhanced imaging modalities have been developed which may help us to decrease the frequency of contrast administration. In this review, these alternative modalities are discussed concisely. Type, osmolality, molecular structure and viscosity of contrast media (CM) are important determinants of nephrotoxicity. Major studies and meta-analyses comparing CM in terms of renal safety are also discussed.
INTRODUCTION
Medical imaging has become an important diagnostic and therapeutic tool in clinical medicine in the era of great technological advances. Contrast media (CM) are increasingly used for better imaging in a broad spectrum of areas such as diagnostic computed tomography (CT) and magnetic resonance imaging (MRI), procedures of interventional radiology and percutaneous transluminal coronary angioplasty (PTCA). There are several adverse effects of CM including nausea, vomiting, thyroid dysfunction and hypersensitivity reactions such as urticaria, laryngeal edema, bronchospasm, hypotension and anaphylactoid shock[1].
Contrast-induced acute kidney injury (CI-AKI) is one of the most important adverse effects of CM. In the past, CI-AKI was considered to be a mild state with asymptomatic and transient elevations in serum creatinine values however recent studies have demonstrated that both short term and long-term mortality rates have been found to be significantly higher in patients with CI-AKI compared to patients without CI-AKI[2]. Furthermore, a history of CI-AKI may be associated with development of chronic kidney disease (CKD) and progression to end-stage renal disease (ESRD) in long term[3,4].
In this review, we aimed to discuss the indications of contrast-enhanced imaging, types of CM and their impact on nephrotoxicity, major pathophysiological mechanism of CI-AKI, risk factors and preventive strategies of CI-AKI and alternative non-contrast-enhanced imaging methods.
DEFINITION OF CM
CM is a chemical substance which is used to improve the image quality of various body parts, to differentiate pathological from healthy tissues and to better delineate vascular structures. CM may be used by the way of oral route, intravascular or also through other luminal organs however absorption and nephrotoxic effects of CM used other than intravascular route may be negligible. In this review, the effects of intravascular administration of CM will be discussed.
DEFINITION OF CI-AKI
Various definitions of CI-AKI have been used in the literature. The most widely used definition is the increase in serum creatinine ≥ 0.5 mg/dL or 25% increase of serum creatinine from the baseline value at 48 h after CM administration. However timing of serum creatinine analysis after CM-enhanced imaging is controversial. Measurement as early as 12 h after the procedure (% change of creatinine from baseline) was found to significantly predict CI-AKI and furthermore it was associated with the development of renal damage after 30 d[5]. Serum cystatin C levels have also been evaluated as an early marker of CI-AKI. In the study by Briguori et al[6] performed on CKD patients undergoing PTCA, increase of cystatin C levels ≥ 10% at 24 h after the procedure was found to reliably predict the patients with high risk of CI-AKI.
EPIDEMIOLOGY OF CI-AKI
Incidence of CI-AKI in patients undergoing elective, non-emergent contrast-enhanced CT has been found to be very low, < 1%[7]. In CKD patients, incidence of CI-AKI after intravenous CM administration was found to be 4%[8]. However incidence of CI-AKI following contrast-enhanced CT performed in an emergency setting was found to be higher, > 10% which might reflect the underlying severe clinical status of the patient[9]. Critically ill patients seem to be much more vulnerable to CI-AKI. In a study performed on critically ill patients without pre-existing renal disease, serum creatinine levels were elevated ≥ 25% from the baseline in 18% of the patients after CM-enhanced CT[10].
Incidence of CI-AKI in patients undergoing PTCA with normal baseline renal function was reported to be < 3%[11]. However, the incidence of CI-AKI was found to be as high as 40% in CKD patients undergoing PTCA[12,13].
NEPHROTOXICITY OF MRI CONTRAST AGENTS
Until recently, MRI contrast agents also called gadolinium-based contrast agents (GBCA) have been considered to be safe in terms of nephrotoxicity. However GBCA has also been reported to cause AKI especially at high doses used for angiography in patients with pre-existing CKD and diabetic nephropathy[14-16]. In an in vitro study, cytotoxicity of GBCA was compared to that of iodinated CM in renal tubular cells at angiographic concentrations and GBCA was not less cytotoxic compared with iomeprol[17]. In another study, urinary interleukin-18 and N-acetyl-glucosaminidase levels were found to increase transiently after administration of GBCA in patients with normal renal function[18]. These results suggest that GBCA also induces cytotoxicity in renal tubular cells. Another important adverse effect of GBCA is the specific clinical entity called nephrogenic systemic fibrosis (NSF) which occurs especially in patients with CKD. NSF is a potentially mortal complication associated with GBCA.Recently, a relationship between previous gadolinium administrations and high signal intensity in the several parts of the brain has been suggested independent of renal function[19,20]. Gadolinium concentration in tissue was found to be strongly associated with cumulative gadolinium dose[21]. Currently, clinical significance of gadolinium deposition in tissues is unclear, further studies are needed to clarify this issue.
In clinical practice, although GBCA are considered to be relatively safer than iodinated CM, risks of AKI, NSF and brain deposition should be kept in mind[14,16].
CLINICAL ISSUES NECESSITATING CM USE
It is important for clinicians to know the indications of contrast-enhanced imaging to avoid unnecessary contrast administration and its related complications. Common indications of CM use in clinical medicine are presented in Table 1. Accordingly, vascular, neoplastic and inflammatory diseases necessitate contrast-enhanced imaging. However CM is not usually suitable for the imaging of intracranial hemorrhages, cervical trauma, simple bone fractures, interstitial lung diseases and urinary system stones.
Table 1.
Diagnosis and treatment of vascular diseases such as coronary artery disease, pulmonary thromboembolism, arteriovenous malformations, aneurysms, arterial dissections and thrombosis |
Diagnosis and staging of neoplastic diseases and mass lesions |
Diagnosis of inflammatory and infectious diseases such as multiple sclerosis, meningitis, pancreatitis, diverticulitis |
TYPES OF IODINATED CM AND THEIR IMPACT ON NEPHROTOXICITY
Type, osmolality, molecular structure and viscosity of CM are important determinants of nephrotoxicity associated with these agents (Table 2). Hyperosmolal CM (HOCM) was shown to more frequently cause CI-AKI compared with low-osmolal CM (LOCM)[22]. However HOCM are no more used in clinical practice. There are controversial results in studies comparing iso-osmolal CM (IOCM) and LOCM as seen in Table 3. In most of these studies, no difference was found between IOCM and LOCM in terms of renal safety. Meta-analyses comparing IOCM and LCOM are presented in Table 4. In the meta-analysis by Reed et al[23], iodixanol (IOCM) was found to be associated with a reduced risk of CI-AKI compared to iohexol (LOCM) however risk of CI-AKI was not significantly different between iodixanol and other LOCM. In a very recent meta-analysis by Eng et al[24], a modest decrease in the risk of CI-AKI was found with iodixanol (IOCM) when compared to other LOCM however no difference was found between the groups in terms of risk of renal replacement therapy, cardiovascular outcomes or death. Kidney Disease: Improving Global Outcomes (KDIGO) guidelines recommended to use LOCM or IOCM instead of HOCM however due to lack of reliable evidence, no recommendation was made about the preference of IOCM or LOCM[25].
Table 2.
Osmolality | High osmolal (> 1400 mosm/kg) | Low osmolal (500-850 mosm/kg) | Iso-osmolal (290 mosm/kg) | |
Molecular structure | Ionic/monomer | Ionic/dimer | Non-ionic/monomer | Non-ionic/dimer |
Name of molecule | Diatrizoate (Hypaque) | Ioxaglate (Hexabrix) | Iohexol (Omnipaque) | Iodixanol (Visipaque) |
Iopamidol (Isovue) | ||||
Ioversol (Optiray) | ||||
Iopromide (Ultravist) | ||||
Iopentol (Imagopaque) | ||||
Iomeprol (Iomeron) |
Table 3.
Ref. | Baseline renal functions/patient population | Procedure/administration route | Compared drugs | Aim of the study/primary end points | Results |
Feldkamp et al[94] | Normal GFR | PTCA (intra-arterial) | Iodixanol (IOCM) vs Iopromide (LOCM) | ≥ 25% increase in SCr at 48 h | No difference |
Hardiek et al[95] | Normal GFR, diabetic patients | PTCA (intra-arterial) | Iodixanol (IOCM) vs Iopamidol (LOCM) | ≥ 25% increase in SCr days 1, 3 and 7 | No difference |
Aspelin et al[96] (NEPHRIC) | CKD, diabetic patients | PTCA (intra-arterial) | Iodixanol (IOCM) vs Iohexol (LOCM) | Peak increase in SCr day 0–3 | Iso-osmolal safer than low-osmolal CM |
Jo et al[97] (RECOVER) | CKD | PTCA (intra-arterial) | Iodixanol (IOCM) vs Ioxaglate (LOCM) | Increase in SCr ≥ 25% or ≥ 0.5 mg/dL within 2 d | Iso-osmolal safer than low-osmolal CM |
Solomon et al[98] (CARE) | CKD | PTCA (intra-arterial) | Iodixanol (IOCM) vs Iopamidol (LOCM) | Increase in SCr > 0.5 mg/dL at 45-120 h | No difference |
Rudnick et al[99] (VALOR) | CKD | PTCA (intra-arterial) | Iodixanol (IOCM) vs Ioversol (LOCM) | Increase in SCr > 0.5 mg/dL within 72 h | No difference |
Barrett et al[8] (IMPACT) | CKD | CT (intravenous) | Iodixanol (IOCM) vs Iopamidol (LOCM) | Increase in SCr > 0.5 mg/dL or ≥ 25% at 48–72 h | No difference |
Kuhn et al[100] (PREDICT) | CKD | CT (intravenous) | Iodixanol (IOCM) vs Iopamidol (LOCM) | Increase in SCr > 0.5 mg/dL within 48-72 h | No difference |
Thomsen et al[101] (ACTIVE) | CKD | CT (intravenous) | Iodixanol (IOCM) vs Iomeprol (LOCM) | Increase in SCr > 0.5 mg/dL at 48-72 h | Low-osmolal safer than iso-osmolal CM |
Nguyen et al[102] | CKD | CT (intravenous) | Iodixanol (IOCM) vs Iopromide (LOCM) | Peak rise in SCr days 1-3 | Iso-osmolal safer than low-osmolal CM |
Wessely et al[103] | CKD | PTCA (intra-arterial) | Iodixanol (IOCM) vs İomeprol (LOCM) | Peak increase in SCr | No difference |
CM: Contrast media; CKD: Chronic kidney disease; LOCM: Low-osmolal contrast media; CT: Computed tomography; PTCA: Percutaneous transluminal coronary angioplasty.
Table 4.
Metaanalyses | Baseline renal functions | Procedure/administration route | Compared drugs | Results |
McCullough et al[104] (16 trials) | Both normal GFR and CKD | PTCA (intra-arterial) | Iodixanol (IOCM) vs various LOCM | Iodixanol safer than LOCM, e.p. in patients with CKD or CKD + diabetes mellitus |
Reed et al[23] (16 trials) | Both normal GFR and CKD | PTCA + CT (intra-arterial + intravenous) | Iodixanol (IOCM) vs various LOCM | Overall, no difference. However, iodixanol safer than ioxaglate and iohexol |
Heinrich et al[48] (25 trials) | Both normal GFR and CKD | PTCA + IV urography + CT (intra-arterial + intravenous) | Iodixanol (IOCM) vs various LOCM | Overall, no difference. However, iodixanol safer than iohexol in CKD patients when CM used via intra-arterial route |
From et al[105] (36 trials) | Both normal GFR and CKD | PTCA + CT (intra-arterial + intravenous) | Iodixanol (IOCM) vs various LOCM | Overall, no difference. Iodixanol safer than iohexol |
Eng et al[24] (29 trials) | Both normal GFR and CKD | PTCA + IV urography + CT (intra-arterial + intravenous) | Iodixanol (IOCM) vs various LOCM | Iodixanol slightly safer than LOCM but the lower risk did not exceed a minimally important clinical difference |
CM: Contrast media; CKD: Chronic kidney disease; LOCM: Low-osmolal contrast media; CT: Computed tomography; PTCA: Percutaneous transluminal coronary angioplasty.
IOCM has lower osmolality compared with LOCM, however since IOCM has dimeric structure, it has higher viscosity than that of monomeric LOCM. Viscosity rather than osmolality determines the resistance to blood flow, thus IOCM may impair renal medullary blood flow to a greater extent compared to LOCM[26]. Lack of clear superiority of IOCM over LOCM in terms of renal safety may be caused by higher viscosity of IOCM.
MAJOR PATHOPHYSIOLOGICAL MECHANISMS OF CI-AKI
Exact pathophysiological mechanism of CI-AKI is not known and includes complex cascades of events. Proposed mechanisms of CI-AKI are presented in Table 5. The most important elements of pathophysiological mechanism of CI-AKI seem to be the medullary hypoxia due to CM-induced medullary vasoconstriction[27-29] and direct renal tubular cytoxicity[30-33]. CM-induced vasoconstriction is not exactly understood but it is probably caused by an imbalance between vasoconstrictive (endothelin, adenosine) and vasodilatatory mediators (nitric oxide and prostocyclin)[28,32,34]. The contribution of oxidative stress seems to be an important and complementary event that further exacerbates CI-AKI[32,35,36].
Table 5.
Medullary vasoconstriction and hypoxia[27-29] |
Direct cytotoxicity to renal tubular cells[30-33] |
Release of vasoconstrictive mediators: Endothelin, adenosine, angiotensin II, vasopressin[28] |
Reduction of vasodilatatory mediators: Nitric oxide, prostocyclin[28,32,34] |
Increased oxidative stress[32,35,36] |
Impairment of tubulo-glomerular feedback[32] |
Increased blood and renal tubular viscosity[41] |
Impairment of mitochondrial function and mitochondrial membrane potential[42] |
In normal physiological state, renal medullary blood flow and oxygen tension are relatively lower than those of the renal cortex. Furthermore, thick ascending limb located in the outer part of the renal medulla has a high-rate of ion transport with increased oxygen consumption exacerbating the relative hypoxia of the renal medulla. The most susceptible part of the nephron to hypoxia is well-known to be the renal medulla. CM is shown to decrase the oxygen tension of the renal medulla and simultaneously CM - induced osmotic diuresis causes increased sodium delivery to thick ascending limb leading to increased oxygen demand[27,37].
CM is known to cause direct mesangial and tubular cell toxicity. Proposed mechanisms of CM-induced cytotoxicity include oxidative stress, cellular energy failure, impaired cellular calcium homeostasis and increased apoptosis[33,38-40]. In the study by Peer et al[33], iodinated CM at different concentrations was found to induce apoptosis in both mesangial and tubular cells. The relationship between hypoxia, oxidative stress and direct cytotoxicity is not well-understood in the context of CI-AKI. Previously, a mismatch between the metabolic demands and the perfusion of renal medulla, in another words “relative hypoxia” was suggested to cause increased oxidative stress leading to further cytotoxicity[36]. However, recently, in the study by Liu et al[32], CM-induced direct cytotoxicity has been shown to cause increased oxidative stress even in the absence of hypoxia. Oxidative stress seemed to be a consequence not a cause of renal tubular injury. Furthermore, in this study CM was found to increase tubuloglomerular feedback which might contribute to disturbances of renal perfusion and filtration[32]. It may suggested that direct cytotoxicity of CM may be the primary event that pull the trigger rather than hypoxia, hypoperfusion or oxidative stress in the pathophysiological mechanism of CI-AKI.
CM - induced increase in blood and renal tubular viscosity may lead to resistance to blood flow and further exacerbate the medullary hypoxia[41]. Another important mechanism may be the mitochondrial dysfunction, especially ionic CM was found to impair the mitochondrial functions and membrane potentials in proximal tubular cells[42].
RISK FACTORS FOR CI-AKI
Patients who are scheduled to have a contrast-enhanced diagnostic or interventional procedure should be evaluated for risk factors of CI-AKI (Table 6). Most important risk factors for CI-AKI are pre-existing CKD (GFR < 60 mL/min per 1.73 m2) and diabetes mellitus which may have additive effects on each other. In a study performed on patients undergoing contrast-enhanced CT, incidence of CI-AKI was found to be higher in diabetic CKD patients compared with non-diabetic CKD patients[43].
Table 6.
Patient-related risk factors |
Pre-existing CKD |
Diabetes mellitus and diabetic nephropathy |
Older age |
Simultaneous use of nephrotoxic drugs |
Multiple myeloma |
States of reduced kidney perfusion |
Dehydration |
Congestive heart failure |
Hemodynamic instability |
Contrast-media related risk factors |
High volume of CM |
Use of hyperosmolal CM |
Multiple exposure to CM in short-term |
Intra-arterial administration |
CKD: Chronic kidney disease; CM: Contrast media.
Impacts of the type of imaging procedure and administration route of CM on CI-AKI
Type of the contrast-enhanced procedure seems to be an important determinant of CI-AKI. As aforementioned in this review, risk of CI-AKI with invasive PTCA seems to be higher compared to that of contrast-enhanced CT. This difference of the risk of CI-AKI between the two procedures may be caused by two reasons: (1) clinical status and comorbidities of the patients; and (2) administration route of the CM. Patients undergoing PTCA usually have significant ischemic heart disease and advanced atherosclerosis. During PTCA, significant hypotension may occur leading to ischemic nephropathy in addition to CI-AKI. Another important adverse event that may occur with invasive angiographic procedures is the cholesterol embolization syndrome (CES) which is sometimes hard to differentiate from CI-AKI. Administration route of the CM may also be important in the occurrence of CI-AKI. For contrast enhanced CT, CM is given intravenously, however in PTCA, CM is given intra-arterially. Risk of CI-AKI has been found to be higher with intra-arterial CM compared to intravenous CM administration especially when CM is used suprarenally[44,45]. With suprarenal intra-arterial administration of CM, peak CM concentration within the kidney was found to be higher[46]. In the meta-analysis by Dong et al[47], risk of CI-AKI with intra-arterial iodixanol was found to be significantly lower when compared with intra-arterial LOCM. However no difference was found between IOCM and LOCM in terms of renal safety when CM was used intravenously. Similarly, in another meta-analysis by Heinrich et al[48], iodixanol was found to be safer than iohexol in CKD patients undergoing a procedure with intra-arterial CM administration. Iodixanol (IOCM) may be suggested to be a better choice for patients in the interventional cardiology setting[47].
Volume of CM
Lower doses of CM (definitions of low dose are variable: < 30-125 mL) were found to be less nephrotoxic[49,50]. In a study by Manske et al[49], low dose of CM was defined as < 5 mL/kg per serum creatinine. Recently, newer CT modalities have been developed using low tube voltage and low CM volume to reduce radiation exposure and the risk of CI-AKI without sacrificing image quality[51-53]. However it should be kept in mind that even very low doses of CM may lead to CI-AKI in patients with high risk factors.
RISK SCORING FOR CI-AKI
Several risk scoring systems have been developed to predict the CI-AKI. In the study by Mehran et al[54], CI-AKI was defined as an increase ≥ 25% and/or ≥ 0.5 mg/dL in serum creatinine at 48 h after PCI and they proposed a CI-AKI risk stratification score based on 8 readily available variables including (1) patient-related features such as age > 75 years, diabetes mellitus, chronic congestive heart failure (CHF), acute pulmonary edema, hypotension, anemia, and CKD; (2) procedure-related features such as the use of IABP or increasing volumes of CM. Integer scores of these risk factors were determined as: Hypotension, 5; IABP, 5; CHF, 5; age > 75 years, 4; anemia, 3; diabetes mellitus, 3; each 100 mL of CM, 1; serum creatinine > 1.5 mg/dL, 4; eGFR = 40-60 mL/min per 1.73 m2, 2; eGFR = 20-40 mL/min per 1.73 m2, 4; eGFR < 20 mL/min per 1.73 m2, 6. These scores are summed up and total risk score is obtained. For example, if total risk score is ≤ 5, risk of CI-AKI is 7.5% and risk of dialysis is 0.04%. However risk of CI-AKI is 57% and risk of dialysis is approximately 13% with a total risk score of ≥ 16. In conclusion, in this study, increasing total risk score was found to exponentially predict increased risk of CI-AKI. Another simple risk scoring for CI-AKI in patients undergoing PTCI is composed of age, creatinine and ejection fraction (ACEF score) which has been found to be an independent and useful predictor of CI-AKI defined as a rise in serum creatinine ≥ 0.5 mg/dL[55,56].
TREATMENT OF CI-AKI
There is no specific treatment for CI-AKI. There is no evidence that any of the preventive strategies are helpful once the CI-AKI develops. Similar to the management of other types of AKI, stabilization of hemodynamic paramaters and maintenance of normal fluid and electrolyte balance is crucial. Thus, prevention may be the only treatment modality for CI-AKI.
PREVENTION OF CI-AKI
Preventive strategies of CI-AKI are presented in Table 7. First things first, to prevent CI-AKI, avoid unnecessary contrast administration which requires good communication between the clinician and the radiologist. Clinicians should be informed about the medical imaging techniques alternative to contrast-enhanced medical imaging. If contrast use is inevitable, every patient should be evaluated for the risk factors for CI-AKI. Re-evaluation of concomitant use of other nephrotoxic drugs is of the utmost importance. Non-steroid anti-inflammatory drugs and nephrotoxic antibiotics such as aminoglycosides, colistin and antifungals such as amphotericin B should not be used if clinically possible.
Table 7.
Assess the risk of CI-AKI |
Assess the need of contrast-enhancement, avoid unnecessary contrast administration |
Avoid concomitant use of other nephrotoxic drugs |
Hydrate the patient with isotonic saline and/or sodium bicarbonate before and after the procedure |
N-acetyl-cysteine 1200 mg orally twice daily |
Prefer iso-osmolal or hypo-osmolal CM |
Use minimum amount of CM |
Check renal functions within 1 wk of the procedure |
CI-AKI: Contrast-induced acute kidney injury; CM: Contrast media.
Intravenous hydration
Various strategies and drugs have been tried to prevent CI-AKI in the literature (Table 8), however intravascular hydration seems to be the best preventive measure against CI-AKI[57-59].
Table 8.
Drugs |
Hydration with isotonic saline[57-59] |
N-acetyl-cysteine[69,106-110] |
Sodium bicarbonate[58,68,108,109,111] |
Theophylline[112-114] |
Mannitol[115] |
Furosemide[115-117] |
Ascorbic acid (vitamin C)[118] |
Tocopherol (vitamin E)[119] |
Statins[120-124] |
Mesna[125] |
Dopamine[126] |
Fenoldopam (dopamin agonist)[127] |
Calcium channel blockers (verapamil, diltiazem)[128] |
Adenosine[129] |
Endothelin receptor antagonists[130] |
Atrial natriuretic peptide[131] |
Iloprost (PGI2 analogue)[132] |
Misoprostol (PGE1 analogue)[133] |
Trimetazidine[134] |
Erythropoetin[135,136] |
Nebivolol[137] |
Sodium citrate[138] |
Procedures |
Remote ischemic preconditioning[72,73] |
Prophylactic hemodialysis/hemofiltration/hemodiafiltration[71,139,140] |
In a prospective randomized study, hydration with isotonic (0.9% saline) and half-isotonic (0.45% sodium chloride plus 5% glucose) solutions were compared in terms of efficiency in prevention of CI-AKI in patients undergoing coronary angioplasty. Hydration was performed before, during and after the procedure and total amount of hydration was approximately 2000 mL. In this study, isotonic hydration was found to be superior to half-isotonic hydration in the prevention of CI-AKI[57]. In a study performed on patients undergoing nonemergency cardiac catheterization, saline hydration starting from 12 h before the procedure was compared to unrestricted oral fluid intake[59]. Patients in the first group received normal saline for 24 h (at a rate of 1 mL/kg per hour). Intravenous saline hydration was found to decrease the both incidence and severity of CI-AKI. In contrast, in a very recent prospective, randomized, non-inferiority study performed on CKD patients (eGFR: 30-59 mL/min per 1.73 m2) undergoing an elective procedure with CM, patients were randomly assigned to receive intravenous 0.9% NaCl or no prophylaxis[60]. No prophylaxis group was found to be non-inferior to prophylaxis group and furthermore it was found to be cost-effective. However, despite the results of this study, we still strongly recommend hydration especially in patients with high risk of CI-AKI. Hypervolemia should be avoided during hydration of the patients. Monitorization of left ventricular end diastolic pressure was found to be a useful and effective way of guiding fluid replacement in a randomized controlled trial[61]. Further studies are needed to prove the efficacy of hydration in prevention of CI-AKI.
Sodium bicarbonate
There is controversy about the efficacy of sodium bicarbonate to prevent CI-AKI, several studies found sodium bicarbonate as protective against CI-AKI[62,63] while others found no beneficial effect[64-66]. In a meta-analysis, sodium bicarbonate was found to be protective against CI-AKI but with a borderline significance[63]. In another 2 meta-analyses, no difference was found between bicarbonate and saline in terms of prevention from CI-AKI[67,68].
There is no standard dose of sodium bicarbonate for the prevention of CI-AKI. In a study, bicarbonate solution was prepared by adding 154 mL of 1000 mEq/L sodium bicarbonate to 846 mL of 5% dextrose in H2O[62]. In this study, hydration with sodium bicarbonate before contrast exposure is more effective than hydration with sodium chloride for prophylaxis of CI-AKI. In another study, bicarbonate solution was prepared with 75 mL of 8.4% sodium bicarbonate added to 1 L of isotonic saline[65]. In this study, no difference was found between sodium bicarbonate plus saline group and hyration with only saline group in terms of prevention from CI-AKI. Since sodium bicarbonate contains high amount of sodium, risk of hypervolemia should be taken into consideration especially in patients with congestive heart failure and CKD and dose of the bicarbonate should be individualized.
N-acetylcysteine
N-acetylcysteine (NAC) did not decrease the risk of CI-AKI in patients undergoing PTCA in a large randomized trial[69]. There are several meta-analyses about the efficacy of NAC against CI-AKI with both non-significant[70] and significant results[67]. Although the strength of the evidence is low, NAC is a well tolerated, inexpensive drug and it has a relatively good profile of adverse effects. Thus, in 2012, KDIGO suggested NAC for patients with high risk of CI-AKI[25]. There is no consensus on the dose of the NAC however it is usually used at a dose of 600-1200 mg orally twice daily.
Prophylactic hemodialysis/hemofiltration
Prophylactic hemodialysis (HD) and hemofiltration (HF) were not found to be protective against CI-AKI. In the meta-analysis including 8 studies of HD and 3 studies of HF, no beneficial effects of these treatment modalities was found against CI-AKI[71]. Furthermore, HD was found to increase the risk of CI-AKI. Thus prophylactic renal replacement treatments are not recommended.
Remote ischemic preconditioning
Remote ischemic preconditioning (RIP) is an interesting procedure that has been evaluated as a potential protective mechanism of CI-AKI. RIP depends on a hypothesis that a transient ischemia of an organ may protect against an ischemic injury of another distant organ. Mostly, RIP has been induced by arm ischemia performed by inflation of blood pressure cuffs. In preliminary studies, RIP has been found to decrease the risk of CI-AKI[72,73]. However further randomized clinical trials are needed before a recommendation can be made.
Should we stop ACEI/ARB treatments before the contrast-enhanced imaging?
Some clinicians may prefer to stop angiotensin converting enzyme inhibitors (ACEI) and angiotensin receptor blockers (ARB) before the contrast administration because ACEI/ARB are considered to increase the risk of CI-AKI. Supporting these concerns, in a retrospective study, use of ACEI/ARBs during PTCA was found to be independently associated with increased risk of CI-AKI[74]. However in a prospective randomized trial, discontinuation of ACEI/ARB treatments 24 h before PTCA did not influence the incidence of CI-AKI in patients with CKD[75]. We think that, cessation of ACEI/ARB treatments for only 1 d before the procedure might not be adequate because renal hemodynamic effects of these drugs might last longer. In a very recent meta-analysis, ACEI use was not found to have a significant effect on the CI-AKI in patients undergoing PTCA[76]. In summary, there is not enough evidence to recommend withholding or continuing ACEI/ARB treatments before contrast-enhanced imaging.
Should we stop metformin treatment before the contrast-enhanced imaging?
Metformin is not a nephrotoxic drug however it is excreted by the kidney. Metformin is known to cause severe lactic acidosis in patients with renal impairment. About 8% of cases reporting metformin induced lactic acidosis were found to be associated with CI-AKI[77]. Cessation of metformin at least 48 h before the contrast administration is a common but controversial clinical practice[78]. According to other researchers, the risk of metformin induced lactic acidosis is extremely low in patients with normal renal function thus discontinuation of metformin is considered unnecessary in non-uremic patients[79]. We think that it will be appropriate to discontinue metformin especially in CKD patients who are planned to have a contrast-enhanced procedure.
ALTERNATIVE NON-CONTRAST ENHANCED IMAGING TECHNIQUES
In the era of rapidly evolving technology, new non-contrast-enhanced imaging modalities have been developed (Table 9). Most of these modalities are MRI-based techniques. Knowledge of these new techniques may be beneficial for the renal health of the patients needing contrast-enhanced imaging and interventions. Preference of these imaging modalities may be discussed between the clinician and radiologist.
Table 9.
Name of the technique | Clinical indications | Notes |
TOF MR angiography | Cerebral aneurysm | No contrast agent is required |
Stroke | ||
Atherosclerotic carotid disease | ||
Arteriovenous malformation | ||
Peripheral artery disease (less frequently) | ||
ECG-gated fast spin echo MR angiography | Peripheral artery disease | No contrast agent is required. |
Thoraco-abdominal aortic aneurysm | Higher image quality compared to TOF MR angiography in peripheral arterial imaging | |
SSFP MR imaging | Coronary artery disease | No contrast agent is required |
Myocardial viability and function | ||
Pericardial diseases | ||
Renal artery stenosis | ||
Congenital heart diseases | ||
Arterial spin labeling with/without SSFP | Native and transplanted renal renal artery stenosis | No contrast agent is required. |
Renal perfusion | Evaluation of organ perfusion | |
Cerebral blood flow | When combined with SSFP, it can be used as an angiographic imaging | |
Characterization of masses | ||
Phase contrast MR imaging | Imaging of major thoroco-abdominal vascular structures | No contrast agent is required. |
Congenital heart disease | Quantification of blood flow and velocity | |
Renal artery stenosis | ||
Carbon-dioxide angiography | Peripheral artery disease (mostly infra-diaphragmatic) | No contrast agent is required. |
Non-allergenic, non-nephrotoxic, inexpensive. | ||
Neurotoxic, risk of air trapping and distal ischemia |
TOF: Time-of-flight; MR: Magnetic resonance; ECG: Electrocardiography; SSFP: Steady-state free precession.
CONTRAST USE IN END-STAGE RENAL DISEASE
There are two concerns about the use of iodinated CM in patients with ESRD; risk of loss of residual renal function (RRF) and CM-induced hypervolemia.
RRF is associated with better outcome and survival in patients with ESRD[80]. Thus it should be preserved by avoiding unnecessary use of CM and nephrotoxic drugs. HD treatment after iodinated CM exposure was not shown to preserve RRF in patients with ESRD[81].
Another concern about the contrast administration is the hypervolemia that may be induced by the CM. Sometimes clinicians may prefer to perform HD immediately after contrast enhanced imaging. However as reported by Hamani et al[82], new non-ionic LOCM does not seem to increase serum osmolality, arterial blood pressure and it does not cause hypervolemia. Thus immediate HD may not be warranted to prevent hypervolemia in stable chronic HD patients.
GBCA should be better avoided in ESRD patients because of the risk of potentially mortal complication: NSF which is a systemic fibrosing disease that occurs due to exposure to GBCA especially in patients with GFR < 30 mL/min[83]. If it is inevitable to use GBCA in ESRD patients, immediate HD after the imaging procedure should be considered because GBCA has been shown to be effectively removed by HD[84]. However no proof exists that HD after GBCA exposure reduces the risk of NSF.
In HD patients without urine output (no RRF), if contrast-enhanced imaging is required, CT is clearly preferred over MRI to avoid the risk of NSF.
PROGNOSIS OF CI-AKI
Short and long term mortalities of patients with CI-AKI have been shown to be higher compared with patients without CI-AKI[85-87]. However there are few studies about the long-term renal prognosis of patients who developed CI-AKI. In a prospective study performed on patients with symptomatic peripheral artery disease undergoing PTCA, patients with CI-AKI were found to be at increased risk of long-term loss of renal function, cardiovascular events, and death[88]. In this study, one year after the procedure, decline in eGFR was significantly higher in patients with CI-AKI compared with patients without CI-AKI (12.4 mL/min vs 6.2 mL/min). In another observational study on CKD patients undergoing PTCA, persistent renal dysfunction was defined as the decrease of creatinine clearance ≥ 25% of baseline values at 3 mo[3]. In this study, overall incidence of CI-AKI was found to be 12%, and persistent renal dysfunction was found in 18.6% of CI-AKI patients. Similarly, in another study performed on patients undergoing PTCA, continuous deterioration of kidney function (CDKF) was defined as > 25% increase in serum creatinine or serum creatinine > 0.5 mg/dL above baseline at 6 to 8 mo after PTCA[4]. In this study CDFK was found in 16% of the study population and this group of patients was found to have significantly higher 5-year mortality rate. In a large study performed to find the incidence of CKD onset after PTCA, incidence of new-onset CKD within 6 mo of the procedure was found to be 0.9%[89]. Furthermore, in this study trans-radial access site was found to be associated with less CKD than the femoral approach.
CES
The most important alternative diagnosis of AKI after contrast-enhanced imaging especially PTCA is the CES which is rarer than CI-AKI however long-term renal survival is significantly worse than CI-AKI[90]. CES manifests later than CI-AKI, usually 1-2 wk after the procedure. Dislodgement of cholesterol crystals from the atherosclerotic plaques leads to embolization of the small peripheral arterioles causing a multisystemic disease with allergic-immunological features including eosinophilia, hypocomplementemia, livedo reticularis, distal gangrenes with palpable pulses (blue-toe syndrome) and pathognomonic Hollenhorst plaques on ophthalmologic examination[91]. Renal biopsy reveals empty clefts within the obliterated lumens of the arterioles[90]. Differentiation of CI-AKI and CES is important because these two diseases may have different types of treatment modalities. Once developed, CI-AKI necessitates only supportive measures. However since CES is a type of allergic-immunological disease, anti-inflammatory treatments such as corticosteroids and cyclophosphamide may be considered[92,93]. But there is no proof of efficacy of these anti-inflammatory treatments on CES.
Footnotes
Manuscript source: Invited manuscript
Specialty type: Urology and nephrology
Country of origin: Turkey
Peer-review report classification
Grade A (Excellent): A
Grade B (Very good): 0
Grade C (Good): C, C, C
Grade D (Fair): 0
Grade E (Poor): 0
Conflict-of-interest statement: Authors declare no conflict of interests for this article.
Peer-review started: January 21, 2017
First decision: March 8, 2017
Article in press: April 19, 2017
P- Reviewer: Sabate M, Schoenhagen P, Tomizawa M, Zuo L S- Editor: Song XX L- Editor: A E- Editor: Li D
References
- 1.Bottinor W, Polkampally P, Jovin I. Adverse reactions to iodinated contrast media. Int J Angiol. 2013;22:149–154. doi: 10.1055/s-0033-1348885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Rudnick M, Feldman H. Contrast-induced nephropathy: what are the true clinical consequences? Clin J Am Soc Nephrol. 2008;3:263–272. doi: 10.2215/CJN.03690907. [DOI] [PubMed] [Google Scholar]
- 3.Maioli M, Toso A, Leoncini M, Gallopin M, Musilli N, Bellandi F. Persistent renal damage after contrast-induced acute kidney injury: incidence, evolution, risk factors, and prognosis. Circulation. 2012;125:3099–3107. doi: 10.1161/CIRCULATIONAHA.111.085290. [DOI] [PubMed] [Google Scholar]
- 4.Nemoto N, Iwasaki M, Nakanishi M, Araki T, Utsunomiya M, Hori M, Ikeda N, Makino K, Itaya H, Iijima R, et al. Impact of continuous deterioration of kidney function 6 to 8 months after percutaneous coronary intervention for acute coronary syndrome. Am J Cardiol. 2014;113:1647–1651. doi: 10.1016/j.amjcard.2014.02.019. [DOI] [PubMed] [Google Scholar]
- 5.Ribichini F, Graziani M, Gambaro G, Pasoli P, Pighi M, Pesarini G, Abaterusso C, Yabarek T, Brunelleschi S, Rizzotti P, et al. Early creatinine shifts predict contrast-induced nephropathy and persistent renal damage after angiography. Am J Med. 2010;123:755–763. doi: 10.1016/j.amjmed.2010.02.026. [DOI] [PubMed] [Google Scholar]
- 6.Briguori C, Visconti G, Rivera NV, Focaccio A, Golia B, Giannone R, Castaldo D, De Micco F, Ricciardelli B, Colombo A. Cystatin C and contrast-induced acute kidney injury. Circulation. 2010;121:2117–2122. doi: 10.1161/CIRCULATIONAHA.109.919639. [DOI] [PubMed] [Google Scholar]
- 7.Weisbord SD, Mor MK, Resnick AL, Hartwig KC, Palevsky PM, Fine MJ. Incidence and outcomes of contrast-induced AKI following computed tomography. Clin J Am Soc Nephrol. 2008;3:1274–1281. doi: 10.2215/CJN.01260308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Barrett BJ, Katzberg RW, Thomsen HS, Chen N, Sahani D, Soulez G, Heiken JP, Lepanto L, Ni ZH, Ni ZH, et al. Contrast-induced nephropathy in patients with chronic kidney disease undergoing computed tomography: a double-blind comparison of iodixanol and iopamidol. Invest Radiol. 2006;41:815–821. doi: 10.1097/01.rli.0000242807.01818.24. [DOI] [PubMed] [Google Scholar]
- 9.Mitchell AM, Jones AE, Tumlin JA, Kline JA. Incidence of contrast-induced nephropathy after contrast-enhanced computed tomography in the outpatient setting. Clin J Am Soc Nephrol. 2010;5:4–9. doi: 10.2215/CJN.05200709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Polena S, Yang S, Alam R, Gricius J, Gupta JR, Badalova N, Chuang P, Gintautas J, Conetta R. Nephropathy in critically Ill patients without preexisting renal disease. Proc West Pharmacol Soc. 2005;48:134–135. [PubMed] [Google Scholar]
- 11.Rihal CS, Textor SC, Grill DE, Berger PB, Ting HH, Best PJ, Singh M, Bell MR, Barsness GW, Mathew V, et al. Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation. 2002;105:2259–2264. doi: 10.1161/01.cir.0000016043.87291.33. [DOI] [PubMed] [Google Scholar]
- 12.Chong E, Shen L, Poh KK, Tan HC. Risk scoring system for prediction of contrast-induced nephropathy in patients with pre-existing renal impairment undergoing percutaneous coronary intervention. Singapore Med J. 2012;53:164–169. [PubMed] [Google Scholar]
- 13.Marenzi G, Lauri G, Assanelli E, Campodonico J, De Metrio M, Marana I, Grazi M, Veglia F, Bartorelli AL. Contrast-induced nephropathy in patients undergoing primary angioplasty for acute myocardial infarction. J Am Coll Cardiol. 2004;44:1780–1785. doi: 10.1016/j.jacc.2004.07.043. [DOI] [PubMed] [Google Scholar]
- 14.Penfield JG, Reilly RF. What nephrologists need to know about gadolinium. Nat Clin Pract Nephrol. 2007;3:654–668. doi: 10.1038/ncpneph0660. [DOI] [PubMed] [Google Scholar]
- 15.Fujisaki K, Ono-Fujisaki A, Kura-Nakamura N, Komune N, Hirakawa N, Tsuruya K, Komune S, Iida M. Rapid deterioration of renal insufficiency after magnetic resonance imaging with gadolinium-based contrast agent. Clin Nephrol. 2011;75:251–254. doi: 10.5414/cnp75251. [DOI] [PubMed] [Google Scholar]
- 16.Perazella MA. Current status of gadolinium toxicity in patients with kidney disease. Clin J Am Soc Nephrol. 2009;4:461–469. doi: 10.2215/CJN.06011108. [DOI] [PubMed] [Google Scholar]
- 17.Heinrich MC, Kuhlmann MK, Kohlbacher S, Scheer M, Grgic A, Heckmann MB, Uder M. Cytotoxicity of iodinated and gadolinium-based contrast agents in renal tubular cells at angiographic concentrations: in vitro study. Radiology. 2007;242:425–434. doi: 10.1148/radiol.2422060245. [DOI] [PubMed] [Google Scholar]
- 18.Mawad H, Laurin LP, Naud JF, Leblond FA, Henley N, Vallée M, Pichette V, Leblanc M. Changes in Urinary and Serum Levels of Novel Biomarkers after Administration of Gadolinium-based Contrast Agents. Biomark Insights. 2016;11:91–94. doi: 10.4137/BMI.S39199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology. 2014;270:834–841. doi: 10.1148/radiol.13131669. [DOI] [PubMed] [Google Scholar]
- 20.Olchowy C, Cebulski K, Łasecki M, Chaber R, Olchowy A, Kałwak K, Zaleska-Dorobisz U. The presence of the gadolinium-based contrast agent depositions in the brain and symptoms of gadolinium neurotoxicity - A systematic review. PLoS One. 2017;12:e0171704. doi: 10.1371/journal.pone.0171704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, Williamson EE, Eckel LJ. Intracranial Gadolinium Deposition after Contrast-enhanced MR Imaging. Radiology. 2015;275:772–782. doi: 10.1148/radiol.15150025. [DOI] [PubMed] [Google Scholar]
- 22.Lautin EM, Freeman NJ, Schoenfeld AH, Bakal CW, Haramati N, Friedman AC, Lautin JL, Braha S, Kadish EG. Radiocontrast-associated renal dysfunction: a comparison of lower-osmolality and conventional high-osmolality contrast media. AJR Am J Roentgenol. 1991;157:59–65. doi: 10.2214/ajr.157.1.2048540. [DOI] [PubMed] [Google Scholar]
- 23.Reed M, Meier P, Tamhane UU, Welch KB, Moscucci M, Gurm HS. The relative renal safety of iodixanol compared with low-osmolar contrast media: a meta-analysis of randomized controlled trials. JACC Cardiovasc Interv. 2009;2:645–654. doi: 10.1016/j.jcin.2009.05.002. [DOI] [PubMed] [Google Scholar]
- 24.Eng J, Wilson RF, Subramaniam RM, Zhang A, Suarez-Cuervo C, Turban S, Choi MJ, Sherrod C, Hutfless S, Iyoha EE, et al. Comparative Effect of Contrast Media Type on the Incidence of Contrast-Induced Nephropathy: A Systematic Review and Meta-analysis. Ann Intern Med. 2016;164:417–424. doi: 10.7326/M15-1402. [DOI] [PubMed] [Google Scholar]
- 25.KDIGO. Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Suppl. 2012;2:8. [Google Scholar]
- 26.Persson PB, Hansell P, Liss P. Pathophysiology of contrast medium-induced nephropathy. Kidney Int. 2005;68:14–22. doi: 10.1111/j.1523-1755.2005.00377.x. [DOI] [PubMed] [Google Scholar]
- 27.Heyman SN, Brezis M, Epstein FH, Spokes K, Silva P, Rosen S. Early renal medullary hypoxic injury from radiocontrast and indomethacin. Kidney Int. 1991;40:632–642. doi: 10.1038/ki.1991.255. [DOI] [PubMed] [Google Scholar]
- 28.Sendeski M, Patzak A, Pallone TL, Cao C, Persson AE, Persson PB. Iodixanol, constriction of medullary descending vasa recta, and risk for contrast medium-induced nephropathy. Radiology. 2009;251:697–704. doi: 10.1148/radiol.2513081732. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Liss P, Nygren A, Erikson U, Ulfendahl HR. Injection of low and iso-osmolar contrast medium decreases oxygen tension in the renal medulla. Kidney Int. 1998;53:698–702. doi: 10.1046/j.1523-1755.1998.00811.x. [DOI] [PubMed] [Google Scholar]
- 30.Nazıroğlu M, Yoldaş N, Uzgur EN, Kayan M. Role of contrast media on oxidative stress, Ca(2+) signaling and apoptosis in kidney. J Membr Biol. 2013;246:91–100. doi: 10.1007/s00232-012-9512-9. [DOI] [PubMed] [Google Scholar]
- 31.Quintavalle C, Brenca M, De Micco F, Fiore D, Romano S, Romano MF, Apone F, Bianco A, Zabatta MA, Troncone G, et al. In vivo and in vitro assessment of pathways involved in contrast media-induced renal cells apoptosis. Cell Death Dis. 2011;2:e155. doi: 10.1038/cddis.2011.38. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Liu ZZ, Schmerbach K, Lu Y, Perlewitz A, Nikitina T, Cantow K, Seeliger E, Persson PB, Patzak A, Liu R, et al. Iodinated contrast media cause direct tubular cell damage, leading to oxidative stress, low nitric oxide, and impairment of tubuloglomerular feedback. Am J Physiol Renal Physiol. 2014;306:F864–F872. doi: 10.1152/ajprenal.00302.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Peer A, Averbukh Z, Berman S, Modai D, Averbukh M, Weissgarten J. Contrast media augmented apoptosis of cultured renal mesangial, tubular, epithelial, endothelial, and hepatic cells. Invest Radiol. 2003;38:177–182. doi: 10.1097/01.RLI.0000054529.61167.84. [DOI] [PubMed] [Google Scholar]
- 34.Ribeiro L, de Assunção e Silva F, Kurihara RS, Schor N, Mieko E, Higa S. Evaluation of the nitric oxide production in rat renal artery smooth muscle cells culture exposed to radiocontrast agents. Kidney Int. 2004;65:589–596. doi: 10.1111/j.1523-1755.2004.00408.x. [DOI] [PubMed] [Google Scholar]
- 35.Bakris GL, Lass N, Gaber AO, Jones JD, Burnett JC. Radiocontrast medium-induced declines in renal function: a role for oxygen free radicals. Am J Physiol. 1990;258:F115–F120. doi: 10.1152/ajprenal.1990.258.1.F115. [DOI] [PubMed] [Google Scholar]
- 36.Heyman SN, Rosen S, Khamaisi M, Idée JM, Rosenberger C. Reactive oxygen species and the pathogenesis of radiocontrast-induced nephropathy. Invest Radiol. 2010;45:188–195. doi: 10.1097/RLI.0b013e3181d2eed8. [DOI] [PubMed] [Google Scholar]
- 37.Cronin RE. Contrast-induced nephropathy: pathogenesis and prevention. Pediatr Nephrol. 2010;25:191–204. doi: 10.1007/s00467-009-1204-z. [DOI] [PubMed] [Google Scholar]
- 38.Itoh Y, Yano T, Sendo T, Sueyasu M, Hirano K, Kanaide H, Oishi R. Involvement of de novo ceramide synthesis in radiocontrast-induced renal tubular cell injury. Kidney Int. 2006;69:288–297. doi: 10.1038/sj.ki.5000057. [DOI] [PubMed] [Google Scholar]
- 39.Schick CS, Haller C. Comparative cytotoxicity of ionic and non-ionic radiocontrast agents on MDCK cell monolayers in vitro. Nephrol Dial Transplant. 1999;14:342–347. doi: 10.1093/ndt/14.2.342. [DOI] [PubMed] [Google Scholar]
- 40.Haller C, Hizoh I. The cytotoxicity of iodinated radiocontrast agents on renal cells in vitro. Invest Radiol. 2004;39:149–154. doi: 10.1097/01.rli.0000113776.87762.49. [DOI] [PubMed] [Google Scholar]
- 41.Zhang Y, Wang J, Yang X, Wang X, Zhang J, Fang J, Jiang X. The serial effect of iodinated contrast media on renal hemodynamics and oxygenation as evaluated by ASL and BOLD MRI. Contrast Media Mol Imaging. 2012;7:418–425. doi: 10.1002/cmmi.1468. [DOI] [PubMed] [Google Scholar]
- 42.Hardiek K, Katholi RE, Ramkumar V, Deitrick C. Proximal tubule cell response to radiographic contrast media. Am J Physiol Renal Physiol. 2001;280:F61–F70. doi: 10.1152/ajprenal.2001.280.1.F61. [DOI] [PubMed] [Google Scholar]
- 43.Parfrey PS, Griffiths SM, Barrett BJ, Paul MD, Genge M, Withers J, Farid N, McManamon PJ. Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both. A prospective controlled study. N Engl J Med. 1989;320:143–149. doi: 10.1056/NEJM198901193200303. [DOI] [PubMed] [Google Scholar]
- 44.Moore RD, Steinberg EP, Powe NR, Brinker JA, Fishman EK, Graziano S, Gopalan R. Nephrotoxicity of high-osmolality versus low-osmolality contrast media: randomized clinical trial. Radiology. 1992;182:649–655. doi: 10.1148/radiology.182.3.1535876. [DOI] [PubMed] [Google Scholar]
- 45.Li J, Solomon RJ. Creatinine increases after intravenous contrast administration: incidence and impact. Invest Radiol. 2010;45:471–476. doi: 10.1097/RLI.0b013e3181dc3b67. [DOI] [PubMed] [Google Scholar]
- 46.Gleeson TG, Bulugahapitiya S. Contrast-induced nephropathy. AJR Am J Roentgenol. 2004;183:1673–1689. doi: 10.2214/ajr.183.6.01831673. [DOI] [PubMed] [Google Scholar]
- 47.Dong M, Jiao Z, Liu T, Guo F, Li G. Effect of administration route on the renal safety of contrast agents: a meta-analysis of randomized controlled trials. J Nephrol. 2012;25:290–301. doi: 10.5301/jn.5000067. [DOI] [PubMed] [Google Scholar]
- 48.Heinrich MC, Häberle L, Müller V, Bautz W, Uder M. Nephrotoxicity of iso-osmolar iodixanol compared with nonionic low-osmolar contrast media: meta-analysis of randomized controlled trials. Radiology. 2009;250:68–86. doi: 10.1148/radiol.2501080833. [DOI] [PubMed] [Google Scholar]
- 49.Manske CL, Sprafka JM, Strony JT, Wang Y. Contrast nephropathy in azotemic diabetic patients undergoing coronary angiography. Am J Med. 1990;89:615–620. doi: 10.1016/0002-9343(90)90180-l. [DOI] [PubMed] [Google Scholar]
- 50.Cigarroa RG, Lange RA, Williams RH, Hillis LD. Dosing of contrast material to prevent contrast nephropathy in patients with renal disease. Am J Med. 1989;86:649–652. doi: 10.1016/0002-9343(89)90437-3. [DOI] [PubMed] [Google Scholar]
- 51.Zhang LJ, Qi L, Wang J, Tang CX, Zhou CS, Ji XM, Spearman JV, De Cecco CN, Meinel FG, Schoepf UJ, et al. Feasibility of prospectively ECG-triggered high-pitch coronary CT angiography with 30 mL iodinated contrast agent at 70 kVp: initial experience. Eur Radiol. 2014;24:1537–1546. doi: 10.1007/s00330-014-3157-2. [DOI] [PubMed] [Google Scholar]
- 52.Chen CM, Chu SY, Hsu MY, Liao YL, Tsai HY. Low-tube-voltage (80 kVp) CT aortography using 320-row volume CT with adaptive iterative reconstruction: lower contrast medium and radiation dose. Eur Radiol. 2014;24:460–468. doi: 10.1007/s00330-013-3027-3. [DOI] [PubMed] [Google Scholar]
- 53.Szucs-Farkas Z, Schaller C, Bensler S, Patak MA, Vock P, Schindera ST. Detection of pulmonary emboli with CT angiography at reduced radiation exposure and contrast material volume: comparison of 80 kVp and 120 kVp protocols in a matched cohort. Invest Radiol. 2009;44:793–799. doi: 10.1097/RLI.0b013e3181bfe230. [DOI] [PubMed] [Google Scholar]
- 54.Mehran R, Aymong ED, Nikolsky E, Lasic Z, Iakovou I, Fahy M, Mintz GS, Lansky AJ, Moses JW, Stone GW, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol. 2004;44:1393–1399. doi: 10.1016/j.jacc.2004.06.068. [DOI] [PubMed] [Google Scholar]
- 55.Ranucci M, Castelvecchio S, Menicanti L, Frigiola A, Pelissero G. Risk of assessing mortality risk in elective cardiac operations: age, creatinine, ejection fraction, and the law of parsimony. Circulation. 2009;119:3053–3061. doi: 10.1161/CIRCULATIONAHA.108.842393. [DOI] [PubMed] [Google Scholar]
- 56.Capodanno D, Ministeri M, Dipasqua F, Dalessandro V, Cumbo S, Gargiulo G, Tamburino C. Risk prediction of contrast-induced nephropathy by ACEF score in patients undergoing coronary catheterization. J Cardiovasc Med (Hagerstown) 2016;17:524–529. doi: 10.2459/JCM.0000000000000215. [DOI] [PubMed] [Google Scholar]
- 57.Mueller C, Buerkle G, Buettner HJ, Petersen J, Perruchoud AP, Eriksson U, Marsch S, Roskamm H. Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty. Arch Intern Med. 2002;162:329–336. doi: 10.1001/archinte.162.3.329. [DOI] [PubMed] [Google Scholar]
- 58.Klima T, Christ A, Marana I, Kalbermatter S, Uthoff H, Burri E, Hartwiger S, Schindler C, Breidthardt T, Marenzi G, et al. Sodium chloride vs. sodium bicarbonate for the prevention of contrast medium-induced nephropathy: a randomized controlled trial. Eur Heart J. 2012;33:2071–2079. doi: 10.1093/eurheartj/ehr501. [DOI] [PubMed] [Google Scholar]
- 59.Trivedi HS, Moore H, Nasr S, Aggarwal K, Agrawal A, Goel P, Hewett J. A randomized prospective trial to assess the role of saline hydration on the development of contrast nephrotoxicity. Nephron Clin Pract. 2003;93:C29–C34. doi: 10.1159/000066641. [DOI] [PubMed] [Google Scholar]
- 60.Nijssen EC, Rennenberg RJ, Nelemans PJ, Essers BA, Janssen MM, Vermeeren MA, Ommen VV, Wildberger JE. Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): a prospective, randomised, phase 3, controlled, open-label, non-inferiority trial. Lancet. 2017;389:1312–1322. doi: 10.1016/S0140-6736(17)30057-0. [DOI] [PubMed] [Google Scholar]
- 61.Brar SS, Aharonian V, Mansukhani P, Moore N, Shen AY, Jorgensen M, Dua A, Short L, Kane K. Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: the POSEIDON randomised controlled trial. Lancet. 2014;383:1814–1823. doi: 10.1016/S0140-6736(14)60689-9. [DOI] [PubMed] [Google Scholar]
- 62.Merten GJ, Burgess WP, Gray LV, Holleman JH, Roush TS, Kowalchuk GJ, Bersin RM, Van Moore A, Simonton CA, Rittase RA, et al. Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial. JAMA. 2004;291:2328–2334. doi: 10.1001/jama.291.19.2328. [DOI] [PubMed] [Google Scholar]
- 63.Hoste EA, De Waele JJ, Gevaert SA, Uchino S, Kellum JA. Sodium bicarbonate for prevention of contrast-induced acute kidney injury: a systematic review and meta-analysis. Nephrol Dial Transplant. 2010;25:747–758. doi: 10.1093/ndt/gfp389. [DOI] [PubMed] [Google Scholar]
- 64.Brar SS, Shen AY, Jorgensen MB, Kotlewski A, Aharonian VJ, Desai N, Ree M, Shah AI, Burchette RJ. Sodium bicarbonate vs sodium chloride for the prevention of contrast medium-induced nephropathy in patients undergoing coronary angiography: a randomized trial. JAMA. 2008;300:1038–1046. doi: 10.1001/jama.300.9.1038. [DOI] [PubMed] [Google Scholar]
- 65.Vasheghani-Farahani A, Sadigh G, Kassaian SE, Khatami SM, Fotouhi A, Razavi SA, Mansournia MA, Yamini-Sharif A, Amirzadegan A, Salarifar M, et al. Sodium bicarbonate plus isotonic saline versus saline for prevention of contrast-induced nephropathy in patients undergoing coronary angiography: a randomized controlled trial. Am J Kidney Dis. 2009;54:610–618. doi: 10.1053/j.ajkd.2009.05.016. [DOI] [PubMed] [Google Scholar]
- 66.Solomon R, Gordon P, Manoukian SV, Abbott JD, Kereiakes DJ, Jeremias A, Kim M, Dauerman HL; BOSS Trial Investigators. Randomized Trial of Bicarbonate or Saline Study for the Prevention of Contrast-Induced Nephropathy in Patients with CKD. Clin J Am Soc Nephrol. 2015;10:1519–1524. doi: 10.2215/CJN.05370514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Subramaniam RM, Suarez-Cuervo C, Wilson RF, Turban S, Zhang A, Sherrod C, Aboagye J, Eng J, Choi MJ, Hutfless S, et al. Effectiveness of Prevention Strategies for Contrast-Induced Nephropathy: A Systematic Review and Meta-analysis. Ann Intern Med. 2016;164:406–416. doi: 10.7326/M15-1456. [DOI] [PubMed] [Google Scholar]
- 68.Brar SS, Hiremath S, Dangas G, Mehran R, Brar SK, Leon MB. Sodium bicarbonate for the prevention of contrast induced-acute kidney injury: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2009;4:1584–1592. doi: 10.2215/CJN.03120509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.ACT Investigators. Acetylcysteine for prevention of renal outcomes in patients undergoing coronary and peripheral vascular angiography: main results from the randomized Acetylcysteine for Contrast-induced nephropathy Trial (ACT) Circulation. 2011;124:1250–1259. doi: 10.1161/CIRCULATIONAHA.111.038943. [DOI] [PubMed] [Google Scholar]
- 70.Zagler A, Azadpour M, Mercado C, Hennekens CH. N-acetylcysteine and contrast-induced nephropathy: a meta-analysis of 13 randomized trials. Am Heart J. 2006;151:140–145. doi: 10.1016/j.ahj.2005.01.055. [DOI] [PubMed] [Google Scholar]
- 71.Cruz DN, Goh CY, Marenzi G, Corradi V, Ronco C, Perazella MA. Renal replacement therapies for prevention of radiocontrast-induced nephropathy: a systematic review. Am J Med. 2012;125:66–78.e3. doi: 10.1016/j.amjmed.2011.06.029. [DOI] [PubMed] [Google Scholar]
- 72.Igarashi G, Iino K, Watanabe H, Ito H. Remote ischemic pre-conditioning alleviates contrast-induced acute kidney injury in patients with moderate chronic kidney disease. Circ J. 2013;77:3037–3044. doi: 10.1253/circj.cj-13-0171. [DOI] [PubMed] [Google Scholar]
- 73.Er F, Nia AM, Dopp H, Hellmich M, Dahlem KM, Caglayan E, Kubacki T, Benzing T, Erdmann E, Burst V, et al. Ischemic preconditioning for prevention of contrast medium-induced nephropathy: randomized pilot RenPro Trial (Renal Protection Trial) Circulation. 2012;126:296–303. doi: 10.1161/CIRCULATIONAHA.112.096370. [DOI] [PubMed] [Google Scholar]
- 74.Rim MY, Ro H, Kang WC, Kim AJ, Park H, Chang JH, Lee HH, Chung W, Jung JY. The effect of renin-angiotensin-aldosterone system blockade on contrast-induced acute kidney injury: a propensity-matched study. Am J Kidney Dis. 2012;60:576–582. doi: 10.1053/j.ajkd.2012.04.017. [DOI] [PubMed] [Google Scholar]
- 75.Rosenstock JL, Bruno R, Kim JK, Lubarsky L, Schaller R, Panagopoulos G, DeVita MV, Michelis MF. The effect of withdrawal of ACE inhibitors or angiotensin receptor blockers prior to coronary angiography on the incidence of contrast-induced nephropathy. Int Urol Nephrol. 2008;40:749–755. doi: 10.1007/s11255-008-9368-1. [DOI] [PubMed] [Google Scholar]
- 76.Zhou S, Wu C, Song Q, Yang X, Wei Z. Effect of Angiotensin-Converting Enzyme Inhibitors in Contrast-Induced Nephropathy: A Meta-Analysis. Nephron. 2016;133:1–14. doi: 10.1159/000445167. [DOI] [PubMed] [Google Scholar]
- 77.Sirtori CR, Pasik C. Re-evaluation of a biguanide, metformin: mechanism of action and tolerability. Pharmacol Res. 1994;30:187–228. doi: 10.1016/1043-6618(94)80104-5. [DOI] [PubMed] [Google Scholar]
- 78.Thomsen HS, Morcos SK. Contrast media and metformin: guidelines to diminish the risk of lactic acidosis in non-insulin-dependent diabetics after administration of contrast media. ESUR Contrast Media Safety Committee. Eur Radiol. 1999;9:738–740. doi: 10.1007/s003300050746. [DOI] [PubMed] [Google Scholar]
- 79.Owen RJ, Hiremath S, Myers A, Fraser-Hill M, Barrett BJ. Canadian Association of Radiologists consensus guidelines for the prevention of contrast-induced nephropathy: update 2012. Can Assoc Radiol J. 2014;65:96–105. doi: 10.1016/j.carj.2012.11.002. [DOI] [PubMed] [Google Scholar]
- 80.Shemin D, Bostom AG, Laliberty P, Dworkin LD. Residual renal function and mortality risk in hemodialysis patients. Am J Kidney Dis. 2001;38:85–90. doi: 10.1053/ajkd.2001.25198. [DOI] [PubMed] [Google Scholar]
- 81.Rodby RA. Preventing complications of radiographic contrast media: is there a role for dialysis? Semin Dial. 2007;20:19–23. doi: 10.1111/j.1525-139X.2007.00233.x. [DOI] [PubMed] [Google Scholar]
- 82.Hamani A, Petitclerc T, Jacobs C, Deray G. Is dialysis indicated immediately after administration of iodinated contrast agents in patients on haemodialysis? Nephrol Dial Transplant. 1998;13:1051–1052. [PubMed] [Google Scholar]
- 83.Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE. Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology. 2007;242:647–649. doi: 10.1148/radiol.2423061640. [DOI] [PubMed] [Google Scholar]
- 84.Saitoh T, Hayasaka K, Tanaka Y, Kuno T, Nagura Y. Dialyzability of gadodiamide in hemodialysis patients. Radiat Med. 2006;24:445–451. doi: 10.1007/s11604-006-0055-9. [DOI] [PubMed] [Google Scholar]
- 85.Kim JH, Yang JH, Choi SH, Song YB, Hahn JY, Choi JH, Lee SH, Gwon HC. Predictors of outcomes of contrast-induced acute kidney injury after percutaneous coronary intervention in patients with chronic kidney disease. Am J Cardiol. 2014;114:1830–1835. doi: 10.1016/j.amjcard.2014.09.022. [DOI] [PubMed] [Google Scholar]
- 86.Weisbord SD, Chen H, Stone RA, Kip KE, Fine MJ, Saul MI, Palevsky PM. Associations of increases in serum creatinine with mortality and length of hospital stay after coronary angiography. J Am Soc Nephrol. 2006;17:2871–2877. doi: 10.1681/ASN.2006030301. [DOI] [PubMed] [Google Scholar]
- 87.McCullough PA, Wolyn R, Rocher LL, Levin RN, O’Neill WW. Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality. Am J Med. 1997;103:368–375. doi: 10.1016/s0002-9343(97)00150-2. [DOI] [PubMed] [Google Scholar]
- 88.Sigterman TA, Krasznai AG, Snoeijs MG, Heijboer R, Schurink GW, Bouwman LH. Contrast Induced Nephropathy and Long-term Renal Decline After Percutaneous Transluminal Angioplasty for Symptomatic Peripheral Arterial Disease. Eur J Vasc Endovasc Surg. 2016;51:386–393. doi: 10.1016/j.ejvs.2015.08.023. [DOI] [PubMed] [Google Scholar]
- 89.Vuurmans T, Byrne J, Fretz E, Janssen C, Hilton JD, Klinke WP, Djurdjev O, Levin A. Chronic kidney injury in patients after cardiac catheterisation or percutaneous coronary intervention: a comparison of radial and femoral approaches (from the British Columbia Cardiac and Renal Registries) Heart. 2010;96:1538–1542. doi: 10.1136/hrt.2009.192294. [DOI] [PubMed] [Google Scholar]
- 90.Kronzon I, Saric M. Cholesterol embolization syndrome. Circulation. 2010;122:631–641. doi: 10.1161/CIRCULATIONAHA.109.886465. [DOI] [PubMed] [Google Scholar]
- 91.Dizman N, Aydın Bahat K, Özkanlı Ş, Özkök A. Cholesterol embolization syndrome: A report of two cases. Turk Kardiyol Dern Ars. 2016;44:251–255. doi: 10.5543/tkda.2015.94587. [DOI] [PubMed] [Google Scholar]
- 92.Yücel AE, Kart-Köseoglu H, Demirhan B, Ozdemir FN. Cholesterol crystal embolization mimicking vasculitis: success with corticosteroid and cyclophosphamide therapy in two cases. Rheumatol Int. 2006;26:454–460. doi: 10.1007/s00296-005-0012-4. [DOI] [PubMed] [Google Scholar]
- 93.Dizman N, Aydın Bahat K, Özkanlı Ş, Özkök A. Authors’ reply. Turk Kardiyol Dern Ars. 2016;44:538. [PubMed] [Google Scholar]
- 94.Feldkamp T, Baumgart D, Elsner M, Herget-Rosenthal S, Pietruck F, Erbel R, Philipp T, Kribben A. Nephrotoxicity of iso-osmolar versus low-osmolar contrast media is equal in low risk patients. Clin Nephrol. 2006;66:322–330. doi: 10.5414/cnp66322. [DOI] [PubMed] [Google Scholar]
- 95.Hardiek KJ, Katholi RE, Robbs RS, Katholi CE. Renal effects of contrast media in diabetic patients undergoing diagnostic or interventional coronary angiography. J Diabetes Complications. 2008;22:171–177. doi: 10.1016/j.jdiacomp.2006.11.002. [DOI] [PubMed] [Google Scholar]
- 96.Aspelin P, Aubry P, Fransson SG, Strasser R, Willenbrock R, Berg KJ. Nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med. 2003;348:491–499. doi: 10.1056/NEJMoa021833. [DOI] [PubMed] [Google Scholar]
- 97.Jo SH, Youn TJ, Koo BK, Park JS, Kang HJ, Cho YS, Chung WY, Joo GW, Chae IH, Choi DJ, et al. Renal toxicity evaluation and comparison between visipaque (iodixanol) and hexabrix (ioxaglate) in patients with renal insufficiency undergoing coronary angiography: the RECOVER study: a randomized controlled trial. J Am Coll Cardiol. 2006;48:924–930. doi: 10.1016/j.jacc.2006.06.047. [DOI] [PubMed] [Google Scholar]
- 98.Solomon RJ, Natarajan MK, Doucet S, Sharma SK, Staniloae CS, Katholi RE, Gelormini JL, Labinaz M, Moreyra AE; Investigators of the CARE Study. Cardiac Angiography in Renally Impaired Patients (CARE) study: a randomized double-blind trial of contrast-induced nephropathy in patients with chronic kidney disease. Circulation. 2007;115:3189–3196. doi: 10.1161/CIRCULATIONAHA.106.671644. [DOI] [PubMed] [Google Scholar]
- 99.Rudnick MR, Davidson C, Laskey W, Stafford JL, Sherwin PF; VALOR Trial Investigators. Nephrotoxicity of iodixanol versus ioversol in patients with chronic kidney disease: the Visipaque Angiography/Interventions with Laboratory Outcomes in Renal Insufficiency (VALOR) Trial. Am Heart J. 2008;156:776–782. doi: 10.1016/j.ahj.2008.05.023. [DOI] [PubMed] [Google Scholar]
- 100.Kuhn MJ, Chen N, Sahani DV, Reimer D, van Beek EJ, Heiken JP, So GJ. The PREDICT study: a randomized double-blind comparison of contrast-induced nephropathy after low- or isoosmolar contrast agent exposure. AJR Am J Roentgenol. 2008;191:151–157. doi: 10.2214/AJR.07.3370. [DOI] [PubMed] [Google Scholar]
- 101.Thomsen HS, Morcos SK, Erley CM, Grazioli L, Bonomo L, Ni Z, Romano L; Investigators in the Abdominal Computed Tomography: IOMERON 400 Versus VISIPAQUE 320 Enhancement (ACTIVE) Study. The ACTIVE Trial: comparison of the effects on renal function of iomeprol-400 and iodixanol-320 in patients with chronic kidney disease undergoing abdominal computed tomography. Invest Radiol. 2008;43:170–178. doi: 10.1097/RLI.0b013e31815f3172. [DOI] [PubMed] [Google Scholar]
- 102.Nguyen SA, Suranyi P, Ravenel JG, Randall PK, Romano PB, Strom KA, Costello P, Schoepf UJ. Iso-osmolality versus low-osmolality iodinated contrast medium at intravenous contrast-enhanced CT: effect on kidney function. Radiology. 2008;248:97–105. doi: 10.1148/radiol.2481071484. [DOI] [PubMed] [Google Scholar]
- 103.Wessely R, Koppara T, Bradaric C, Vorpahl M, Braun S, Schulz S, Mehilli J, Schömig A, Kastrati A; Contrast Media and Nephrotoxicity Following Coronary Revascularization by Angioplasty Trial Investigators. Choice of contrast medium in patients with impaired renal function undergoing percutaneous coronary intervention. Circ Cardiovasc Interv. 2009;2:430–437. doi: 10.1161/CIRCINTERVENTIONS.109.874933. [DOI] [PubMed] [Google Scholar]
- 104.McCullough PA, Bertrand ME, Brinker JA, Stacul F. A meta-analysis of the renal safety of isosmolar iodixanol compared with low-osmolar contrast media. J Am Coll Cardiol. 2006;48:692–699. doi: 10.1016/j.jacc.2006.02.073. [DOI] [PubMed] [Google Scholar]
- 105.From AM, Al Badarin FJ, McDonald FS, Bartholmai BJ, Cha SS, Rihal CS. Iodixanol versus low-osmolar contrast media for prevention of contrast induced nephropathy: meta-analysis of randomized, controlled trials. Circ Cardiovasc Interv. 2010;3:351–358. doi: 10.1161/CIRCINTERVENTIONS.109.917070. [DOI] [PubMed] [Google Scholar]
- 106.Fishbane S. N-acetylcysteine in the prevention of contrast-induced nephropathy. Clin J Am Soc Nephrol. 2008;3:281–287. doi: 10.2215/CJN.02590607. [DOI] [PubMed] [Google Scholar]
- 107.Thiele H, Hildebrand L, Schirdewahn C, Eitel I, Adams V, Fuernau G, Erbs S, Linke A, Diederich KW, Nowak M, et al. Impact of high-dose N-acetylcysteine versus placebo on contrast-induced nephropathy and myocardial reperfusion injury in unselected patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. The LIPSIA-N-ACC (Prospective, Single-Blind, Placebo-Controlled, Randomized Leipzig Immediate PercutaneouS Coronary Intervention Acute Myocardial Infarction N-ACC) Trial. J Am Coll Cardiol. 2010;55:2201–2209. doi: 10.1016/j.jacc.2009.08.091. [DOI] [PubMed] [Google Scholar]
- 108.Thayssen P, Lassen JF, Jensen SE, Hansen KN, Hansen HS, Christiansen EH, Junker A, Ravkilde J, Thuesen L, Veien KT, et al. Prevention of contrast-induced nephropathy with N-acetylcysteine or sodium bicarbonate in patients with ST-segment-myocardial infarction: a prospective, randomized, open-labeled trial. Circ Cardiovasc Interv. 2014;7:216–224. doi: 10.1161/CIRCINTERVENTIONS.113.000653. [DOI] [PubMed] [Google Scholar]
- 109.Recio-Mayoral A, Chaparro M, Prado B, Cózar R, Méndez I, Banerjee D, Kaski JC, Cubero J, Cruz JM. The reno-protective effect of hydration with sodium bicarbonate plus N-acetylcysteine in patients undergoing emergency percutaneous coronary intervention: the RENO Study. J Am Coll Cardiol. 2007;49:1283–1288. doi: 10.1016/j.jacc.2006.11.034. [DOI] [PubMed] [Google Scholar]
- 110.Tepel M, van der Giet M, Schwarzfeld C, Laufer U, Liermann D, Zidek W. Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N Engl J Med. 2000;343:180–184. doi: 10.1056/NEJM200007203430304. [DOI] [PubMed] [Google Scholar]
- 111.Zhang B, Liang L, Chen W, Liang C, Zhang S. The efficacy of sodium bicarbonate in preventing contrast-induced nephropathy in patients with pre-existing renal insufficiency: a meta-analysis. BMJ Open. 2015;5:e006989. doi: 10.1136/bmjopen-2014-006989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Huber W, Jeschke B, Page M, Weiss W, Salmhofer H, Schweigart U, Ilgmann K, Reichenberger J, Neu B, Classen M. Reduced incidence of radiocontrast-induced nephropathy in ICU patients under theophylline prophylaxis: a prospective comparison to series of patients at similar risk. Intensive Care Med. 2001;27:1200–1209. doi: 10.1007/s001340101003. [DOI] [PubMed] [Google Scholar]
- 113.Dai B, Liu Y, Fu L, Li Y, Zhang J, Mei C. Effect of theophylline on prevention of contrast-induced acute kidney injury: a meta-analysis of randomized controlled trials. Am J Kidney Dis. 2012;60:360–370. doi: 10.1053/j.ajkd.2012.02.332. [DOI] [PubMed] [Google Scholar]
- 114.Katholi RE, Taylor GJ, McCann WP, Woods WT, Womack KA, McCoy CD, Katholi CR, Moses HW, Mishkel GJ, Lucore CL. Nephrotoxicity from contrast media: attenuation with theophylline. Radiology. 1995;195:17–22. doi: 10.1148/radiology.195.1.7892462. [DOI] [PubMed] [Google Scholar]
- 115.Solomon R, Werner C, Mann D, D’Elia J, Silva P. Effects of saline, mannitol, and furosemide on acute decreases in renal function induced by radiocontrast agents. N Engl J Med. 1994;331:1416–1420. doi: 10.1056/NEJM199411243312104. [DOI] [PubMed] [Google Scholar]
- 116.Marenzi G, Ferrari C, Marana I, Assanelli E, De Metrio M, Teruzzi G, Veglia F, Fabbiocchi F, Montorsi P, Bartorelli AL. Prevention of contrast nephropathy by furosemide with matched hydration: the MYTHOS (Induced Diuresis With Matched Hydration Compared to Standard Hydration for Contrast Induced Nephropathy Prevention) trial. JACC Cardiovasc Interv. 2012;5:90–97. doi: 10.1016/j.jcin.2011.08.017. [DOI] [PubMed] [Google Scholar]
- 117.Weinstein JM, Heyman S, Brezis M. Potential deleterious effect of furosemide in radiocontrast nephropathy. Nephron. 1992;62:413–415. doi: 10.1159/000187090. [DOI] [PubMed] [Google Scholar]
- 118.Spargias K, Alexopoulos E, Kyrzopoulos S, Iokovis P, Greenwood DC, Manginas A, Voudris V, Pavlides G, Buller CE, Kremastinos D, et al. Ascorbic acid prevents contrast-mediated nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention. Circulation. 2004;110:2837–2842. doi: 10.1161/01.CIR.0000146396.19081.73. [DOI] [PubMed] [Google Scholar]
- 119.Tasanarong A, Vohakiat A, Hutayanon P, Piyayotai D. New strategy of α- and γ-tocopherol to prevent contrast-induced acute kidney injury in chronic kidney disease patients undergoing elective coronary procedures. Nephrol Dial Transplant. 2013;28:337–344. doi: 10.1093/ndt/gfs525. [DOI] [PubMed] [Google Scholar]
- 120.Toso A, Maioli M, Leoncini M, Gallopin M, Tedeschi D, Micheletti C, Manzone C, Amato M, Bellandi F. Usefulness of atorvastatin (80 mg) in prevention of contrast-induced nephropathy in patients with chronic renal disease. Am J Cardiol. 2010;105:288–292. doi: 10.1016/j.amjcard.2009.09.026. [DOI] [PubMed] [Google Scholar]
- 121.Patti G, Ricottini E, Nusca A, Colonna G, Pasceri V, D’Ambrosio A, Montinaro A, Di Sciascio G. Short-term, high-dose Atorvastatin pretreatment to prevent contrast-induced nephropathy in patients with acute coronary syndromes undergoing percutaneous coronary intervention (from the ARMYDA-CIN [atorvastatin for reduction of myocardial damage during angioplasty--contrast-induced nephropathy] trial. Am J Cardiol. 2011;108:1–7. doi: 10.1016/j.amjcard.2011.03.001. [DOI] [PubMed] [Google Scholar]
- 122.Jo SH, Koo BK, Park JS, Kang HJ, Cho YS, Kim YJ, Youn TJ, Chung WY, Chae IH, Choi DJ, et al. Prevention of radiocontrast medium-induced nephropathy using short-term high-dose simvastatin in patients with renal insufficiency undergoing coronary angiography (PROMISS) trial--a randomized controlled study. Am Heart J. 2008;155:499.e1–499.e8. doi: 10.1016/j.ahj.2007.11.042. [DOI] [PubMed] [Google Scholar]
- 123.Barbieri L, Verdoia M, Schaffer A, Nardin M, Marino P, De Luca G. The role of statins in the prevention of contrast induced nephropathy: a meta-analysis of 8 randomized trials. J Thromb Thrombolysis. 2014;38:493–502. doi: 10.1007/s11239-014-1076-3. [DOI] [PubMed] [Google Scholar]
- 124.Quintavalle C, Fiore D, De Micco F, Visconti G, Focaccio A, Golia B, Ricciardelli B, Donnarumma E, Bianco A, Zabatta MA, et al. Impact of a high loading dose of atorvastatin on contrast-induced acute kidney injury. Circulation. 2012;126:3008–3016. doi: 10.1161/CIRCULATIONAHA.112.103317. [DOI] [PubMed] [Google Scholar]
- 125.Ludwig U, Riedel MK, Backes M, Imhof A, Muche R, Keller F. MESNA (sodium 2-mercaptoethanesulfonate) for prevention of contrast medium-induced nephrotoxicity - controlled trial. Clin Nephrol. 2011;75:302–308. doi: 10.5414/cn106651. [DOI] [PubMed] [Google Scholar]
- 126.Bakris GL, Lass NA, Glock D. Renal hemodynamics in radiocontrast medium-induced renal dysfunction: A role for dopamine-1 receptors. Kidney Int. 1999;56:206–210. doi: 10.1046/j.1523-1755.1999.00528.x. [DOI] [PubMed] [Google Scholar]
- 127.Stone GW, McCullough PA, Tumlin JA, Lepor NE, Madyoon H, Murray P, Wang A, Chu AA, Schaer GL, Stevens M, et al. Fenoldopam mesylate for the prevention of contrast-induced nephropathy: a randomized controlled trial. JAMA. 2003;290:2284–2291. doi: 10.1001/jama.290.17.2284. [DOI] [PubMed] [Google Scholar]
- 128.Bakris GL, Burnett JC. A role for calcium in radiocontrast-induced reductions in renal hemodynamics. Kidney Int. 1985;27:465–468. doi: 10.1038/ki.1985.32. [DOI] [PubMed] [Google Scholar]
- 129.Pflueger A, Larson TS, Nath KA, King BF, Gross JM, Knox FG. Role of adenosine in contrast media-induced acute renal failure in diabetes mellitus. Mayo Clin Proc. 2000;75:1275–1283. doi: 10.4065/75.12.1275. [DOI] [PubMed] [Google Scholar]
- 130.Wang A, Holcslaw T, Bashore TM, Freed MI, Miller D, Rudnick MR, Szerlip H, Thames MD, Davidson CJ, Shusterman N, et al. Exacerbation of radiocontrast nephrotoxicity by endothelin receptor antagonism. Kidney Int. 2000;57:1675–1680. doi: 10.1046/j.1523-1755.2000.00012.x. [DOI] [PubMed] [Google Scholar]
- 131.Kurnik BR, Allgren RL, Genter FC, Solomon RJ, Bates ER, Weisberg LS. Prospective study of atrial natriuretic peptide for the prevention of radiocontrast-induced nephropathy. Am J Kidney Dis. 1998;31:674–680. doi: 10.1053/ajkd.1998.v31.pm9531185. [DOI] [PubMed] [Google Scholar]
- 132.Spargias K, Adreanides E, Demerouti E, Gkouziouta A, Manginas A, Pavlides G, Voudris V, Cokkinos DV. Iloprost prevents contrast-induced nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention. Circulation. 2009;120:1793–1799. doi: 10.1161/CIRCULATIONAHA.109.863159. [DOI] [PubMed] [Google Scholar]
- 133.Gurkowski L, MacDougall M, Wiegmann T. Effects of Misoprostol on Contrast-Induced Renal Dysfunction. Am J Ther. 1995;2:837–842. doi: 10.1097/00045391-199511000-00003. [DOI] [PubMed] [Google Scholar]
- 134.Onbasili AO, Yeniceriglu Y, Agaoglu P, Karul A, Tekten T, Akar H, Discigil G. Trimetazidine in the prevention of contrast-induced nephropathy after coronary procedures. Heart. 2007;93:698–702. doi: 10.1136/hrt.2006.097477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 135.Kolyada AY, Liangos O, Madias NE, Jaber BL. Protective effect of erythropoietin against radiocontrast-induced renal tubular epithelial cell injury. Am J Nephrol. 2008;28:203–209. doi: 10.1159/000110089. [DOI] [PubMed] [Google Scholar]
- 136.Yokomaku Y, Sugimoto T, Kume S, Araki S, Isshiki K, Chin-Kanasaki M, Sakaguchi M, Nitta N, Haneda M, Koya D, et al. Asialoerythropoietin prevents contrast-induced nephropathy. J Am Soc Nephrol. 2008;19:321–328. doi: 10.1681/ASN.2007040481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 137.Toprak O, Cirit M, Tanrisev M, Yazici C, Canoz O, Sipahioglu M, Uzum A, Ersoy R, Sozmen EY. Preventive effect of nebivolol on contrast-induced nephropathy in rats. Nephrol Dial Transplant. 2008;23:853–859. doi: 10.1093/ndt/gfm691. [DOI] [PubMed] [Google Scholar]
- 138.Markota D, Markota I, Starcevic B, Tomic M, Prskalo Z, Brizic I. Prevention of contrast-induced nephropathy with Na/K citrate. Eur Heart J. 2013;34:2362–2367. doi: 10.1093/eurheartj/eht009. [DOI] [PubMed] [Google Scholar]
- 139.Vogt B, Ferrari P, Schönholzer C, Marti HP, Mohaupt M, Wiederkehr M, Cereghetti C, Serra A, Huynh-Do U, Uehlinger D, et al. Prophylactic hemodialysis after radiocontrast media in patients with renal insufficiency is potentially harmful. Am J Med. 2001;111:692–698. doi: 10.1016/s0002-9343(01)00983-4. [DOI] [PubMed] [Google Scholar]
- 140.Marenzi G, Marana I, Lauri G, Assanelli E, Grazi M, Campodonico J, Trabattoni D, Fabbiocchi F, Montorsi P, Bartorelli AL. The prevention of radiocontrast-agent-induced nephropathy by hemofiltration. N Engl J Med. 2003;349:1333–1340. doi: 10.1056/NEJMoa023204. [DOI] [PubMed] [Google Scholar]