Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1977 Apr;59(4):615–617. doi: 10.1104/pp.59.4.615

Phytochrome-controlled Hydrogen Ion Excretion by Avena Coleoptiles 1

Carl S Pike a, Alice E Richardson a
PMCID: PMC542459  PMID: 16659904

Abstract

A red light-induced, far red reversible stimulation of proton efflux from apical segments of etiolated Avena sativa L. cv. Victory coleoptiles was observed. The acidification responses to red light and also to auxin were not the consequence of respired CO2. The response to red light was strongly inhibited by cycloheximide and carbonyl cyanide, m-chlorophenyl hydrazone, but mannitol had a stimulatory effect. Red light and auxin applied together yielded a greater than additive response, in comparison to the effects of the two stimuli applied separately.

Full text

PDF
615

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cleland R. E. Rapid stimulation of K -H exchange by a plant growth hormone. Biochem Biophys Res Commun. 1976 Mar 22;69(2):333–338. doi: 10.1016/0006-291x(76)90526-x. [DOI] [PubMed] [Google Scholar]
  2. Cleland R. Auxin-induced hydrogen ion excretion from Avena coleoptiles. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3092–3093. doi: 10.1073/pnas.70.11.3092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dowler M. J., Rayle D. L. Auxin Does Not Alter the Permeability of Pea Segments to Tritium-labeled Water. Plant Physiol. 1974 Feb;53(2):229–232. doi: 10.1104/pp.53.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Jacobs M., Ray P. M. Promotion of Xyloglucan Metabolism by Acid pH. Plant Physiol. 1975 Sep;56(3):373–376. doi: 10.1104/pp.56.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Labavitch J. M., Ray P. M. Relationship between Promotion of Xyloglucan Metabolism and Induction of Elongation by Indoleacetic Acid. Plant Physiol. 1974 Oct;54(4):499–502. doi: 10.1104/pp.54.4.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lawson V. R., Weintraub R. L. Interactions of microtubule disorganizers, plant hormones, and red light in wheat coleoptile segment growth. Plant Physiol. 1975 Jun;55(6):1062–1066. doi: 10.1104/pp.55.6.1062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Marmé D., Boisard J., Briggs W. R. Binding properties in vitro of phytochrome to a membrane fraction. Proc Natl Acad Sci U S A. 1973 Dec;70(12 Pt 1-2):3861–3865. doi: 10.1073/pnas.70.12.3861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Newman I. A., Briggs W. R. Phytochrome-mediated Electric Potential Changes in Oat Seedlings. Plant Physiol. 1972 Dec;50(6):687–693. doi: 10.1104/pp.50.6.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pike C. S. Lack of influence of phytochrome on membrane permeability to tritiated water. Plant Physiol. 1976 Feb;57(2):185–187. doi: 10.1104/pp.57.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Quail P. H., Marmé D., Schäfer E. Particle-bound phytochrome from maize and pumpkin. Nat New Biol. 1973 Oct 10;245(145):189–191. doi: 10.1038/newbio245189a0. [DOI] [PubMed] [Google Scholar]
  11. Roux S. J., Yguerabide J. Photoreversible conductance changes induced by phytochrome in model lipid membranes. Proc Natl Acad Sci U S A. 1973 Mar;70(3):762–764. doi: 10.1073/pnas.70.3.762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Satter R. L., Marinoff P., Galston A. W. Phytochrome-controlled Nyctinasty in Albizzia julibrissin: IV. Auxin Effects on Leaflet Movement and K Flux. Plant Physiol. 1972 Aug;50(2):235–241. doi: 10.1104/pp.50.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. White J. M., Pike C. S. Rapid Phytochrome-mediated Changes in Adenosine 5'-Triphosphate Content of Etiolated Bean Buds. Plant Physiol. 1974 Jan;53(1):76–79. doi: 10.1104/pp.53.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES