Abstract
The three abscission-inducing agents - water stress, Ethephon, and auxin transport inhibitors-acted synergistically to promote leaf fall in cotton (Gossypium hirsutum L.). However, the synergism was primarily between stress and Ethephon. Auxin transport inhibitors did not promote the effect of stress alone, only promoted the effect of Ethephon in well watered plants and gave a very small promotion with stress and Ethephon together. Abscission was rapid in stressed plants treated with Ethephon and an auxin transport inhibitor, while leaves fell more slowly from well watered plants treated with Ethephon alone. This suggests that water stress or auxin transport inhibitors influence initial events in abscission; since an auxin transport inhibitor will replace the effect of stress but not Ethephon, an initial event in stress-induced abscission appears to be inhibition of auxin transport. Ethephon promoted lateral bud release, and auxin transport inhibitors did not duplicate that effect alone or promote it in combination with Ethephon.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abeles F. B. Abscission: role of cellulase. Plant Physiol. 1969 Mar;44(3):447–452. doi: 10.1104/pp.44.3.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ben-Yehoshua S., Aloni B. Effect of Water Stress on Ethylene Production by Detached Leaves of Valencia Orange (Citrus sinensis Osbeck). Plant Physiol. 1974 Jun;53(6):863–865. doi: 10.1104/pp.53.6.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beyer E. M. Abscission: the initial effect of ethylene is in the leaf blade. Plant Physiol. 1975 Feb;55(2):322–327. doi: 10.1104/pp.55.2.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beyer E. M., Morgan P. W. Abscission: the role of ethylene modification of auxin transport. Plant Physiol. 1971 Aug;48(2):208–212. doi: 10.1104/pp.48.2.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson M. B., Osborne D. J. Ethylene, the natural regulator of leaf abscission. Nature. 1970 Mar 14;225(5237):1019–1022. doi: 10.1038/2251019a0. [DOI] [PubMed] [Google Scholar]
- Jordan W. R., Morgan P. W., Davenport T. L. Water Stress Enhances Ethylene-mediated Leaf Abscission in Cotton. Plant Physiol. 1972 Dec;50(6):756–758. doi: 10.1104/pp.50.6.756. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipe J. A., Morgan P. W. Ethylene, a regulator of young fruit abscission. Plant Physiol. 1973 May;51(5):949–953. doi: 10.1104/pp.51.5.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McMichael B. L., Jordan W. R., Powell R. D. An effect of water stress on ethylene production by intact cotton petioles. Plant Physiol. 1972 Apr;49(4):658–660. doi: 10.1104/pp.49.4.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan P. W., Durham J. I. Abscission: potentiating action of auxin transport inhibitors. Plant Physiol. 1972 Sep;50(3):313–318. doi: 10.1104/pp.50.3.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan P. W., Hall W. C. Indoleacetic Acid Oxidizing Enzyme & Inhibitors from Light-Grown Cotton. Plant Physiol. 1963 Jul;38(4):365–370. doi: 10.1104/pp.38.4.365. [DOI] [PMC free article] [PubMed] [Google Scholar]