Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1977 Apr;59(4):719–723. doi: 10.1104/pp.59.4.719

UDP-glucose: Glucan Synthetase in Developing Cotton Fibers

II. Structure of the Reaction Product 1

Ursula Heiniger a,2, Deborah P Delmer a,3
PMCID: PMC542480  PMID: 16659925

Abstract

The solubility properties, composition, and structure of the radioactive product synthesized from UDP-[14C]glucose by a highly active cotton fiber glucan synthetase have been determined. Product obtained under the following three different conditions was analyzed: at high and low substrate concentrations by detached fibers, and at high substrate concentrations with an isolated particulate preparation. The results of acetic and nitric acid digestion, enzyme digestion, total acid hydrolyses, periodate oxidation, partial acid hydrolyses, and methylation analyses all support the conclusion that the product of the glucan synthetase produced under all three assay conditions is a linear β-(1→3)-glucan.

Full text

PDF
719

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bacon J. S., Farmer V. C., Jones D., Taylor I. F. The glucan components of the cell wall of baker's yeast (Saccharomyces cerevisiae) considered in relation to its ultrastructure. Biochem J. 1969 Sep;114(3):557–567. doi: 10.1042/bj1140557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Delmer D. P., Heiniger U., Kulow C. UDP-glucose: Glucan Synthetase in Developing Cotton Fibers: I. Kinetic and Physiological Properties. Plant Physiol. 1977 Apr;59(4):713–718. doi: 10.1104/pp.59.4.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ordin L., Hall M. A. Cellulose synthesis in higher plants from UDP glucose. Plant Physiol. 1968 Mar;43(3):473–476. doi: 10.1104/pp.43.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ruiz-Herrera J., Bartnicki-Garcia S. Synthesis of cell wall microfibrils in vitro by a "soluble" chitin synthetase from Mucor rouxii. Science. 1974 Oct 25;186(4161):357–359. doi: 10.1126/science.186.4161.357. [DOI] [PubMed] [Google Scholar]
  5. Ruiz-Herrera J., Sing V. O., Van der Woude W. J., Bartnicki-Garcia S. Microfibril assembly by granules of chitin synthetase. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2706–2710. doi: 10.1073/pnas.72.7.2706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Sandford P. A., Conrad H. E. The structure of the Aerobacter aerogenes A3(S1) polysaccharide. I. A reexamination using improved procedures for methylation analysis. Biochemistry. 1966 May;5(5):1508–1517. doi: 10.1021/bi00869a009. [DOI] [PubMed] [Google Scholar]
  7. Shore G., Maclachlan G. A. The site of cellulose synthesis. Hormone treatment alters the intracellular location of alkali-insoluble beta-1,4-glucan (cellulose) synthetase activities. J Cell Biol. 1975 Mar;64(3):557–571. doi: 10.1083/jcb.64.3.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Shore G., Raymond Y., Maclachlan G. A. The Site of Cellulose Synthesis: Cell Surface and Intracellular beta-1, 4-Glucan (Cellulose) Synthetase Activities in Relation to the Stage and Direction of Cell Growth. Plant Physiol. 1975 Jul;56(1):34–38. doi: 10.1104/pp.56.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Tsai C. M., Hassid W. Z. Solubilization and Separation of Uridine Diphospho-d-glucose: beta-(1 --> 4) Glucan and Uridine Diphospho-d-glucose:beta-(1 --> 3) Glucan Glucosyltransferases from Coleoptiles of Avena sativa. Plant Physiol. 1971 Jun;47(6):740–744. doi: 10.1104/pp.47.6.740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Updegraff D. M. Semimicro determination of cellulose in biological materials. Anal Biochem. 1969 Dec;32(3):420–424. doi: 10.1016/s0003-2697(69)80009-6. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES