Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1977 Apr;59(4):738–740. doi: 10.1104/pp.59.4.738

Alpha-Ketoglutarate Supply for Amino Acid Synthesis in Higher Plant Chloroplasts

Intrachloroplastic Localization of NADP-specific Isocitrate Dehydrogenase 1

Bin A Elias a, Curtis V Givan a
PMCID: PMC542483  PMID: 16659928

Abstract

Isocitrate dehydrogenase was found in Pisum sativum chloroplasts purified on sucrose density gradients. A chloroplast-enriched pellet obtained by differential centrifugation formed two chlorophyll-containing bands. The lower one containing intact chloroplasts had NADP-specific isocitrate dehydrogenase and triose-phosphate isomerase activities. Mitochondria and peroxisomes were observed to band well away from the intact chloroplast region, as indicated by peak activities of fumarase and catalase, respectively. The presence of isocitrate dehydrogenase in chloroplasts suggests that chloroplasts may generate at least some of the α-ketoglutarate required for glutamate synthesis.

Full text

PDF
738

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cohen S. S. Are/were mitochondria and chloroplasts microorganisms? Am Sci. 1970 May-Jun;58(3):281–289. [PubMed] [Google Scholar]
  3. Dalling M. J., Tolbert N. E., Hageman R. H. Intracellular location of nitrate reductase and nitrite reductase. I. Spinach and tobacco leaves. Biochim Biophys Acta. 1972 Dec 14;283(3):505–512. doi: 10.1016/0005-2728(72)90266-6. [DOI] [PubMed] [Google Scholar]
  4. Hall D. O. Nomenclature for isolated chloroplasts. Nat New Biol. 1972 Jan 26;235(56):125–126. doi: 10.1038/newbio235125a0. [DOI] [PubMed] [Google Scholar]
  5. KLINGENBERG M., SLENCZKA W. [Pyridine nucleotide in liver mitochondria. An analysis of their redox relationships]. Biochem Z. 1959;331:486–517. [PubMed] [Google Scholar]
  6. MUDD J. B., McMANUS T. T. Metabolism of acetate by cellfree preparations from spinach leaves. J Biol Chem. 1962 Jul;237:2057–2063. [PubMed] [Google Scholar]
  7. Miflin B. J., Beevers H. Isolation of intact plastids from a range of plant tissues. Plant Physiol. 1974 Jun;53(6):870–874. doi: 10.1104/pp.53.6.870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mitchell C. A., Stocking C. R. Kinetics and Energetics of Light-driven Chloroplast Glutamine Synthesis. Plant Physiol. 1975 Jan;55(1):59–63. doi: 10.1104/pp.55.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. RACKER E. Spectrophotometric measurements of the enzymatic formation of fumaric and cis-aconitic acids. Biochim Biophys Acta. 1950 Jan;4(1-3):211–214. doi: 10.1016/0006-3002(50)90026-6. [DOI] [PubMed] [Google Scholar]
  10. Raven P. H. A multiple origin for plastids and mitochondria. Science. 1970 Aug 14;169(3946):641–646. doi: 10.1126/science.169.3946.641. [DOI] [PubMed] [Google Scholar]
  11. Rocha V., Ting I. P. Preparation of cellular plant organelles from spinach leaves. Arch Biochem Biophys. 1970 Oct;140(2):398–407. doi: 10.1016/0003-9861(70)90081-0. [DOI] [PubMed] [Google Scholar]
  12. Shephard D. C., Levin W. B. Biosynthesis in isolated Acetabularia chloroplasts. I. Protein amino acids. J Cell Biol. 1972 Aug;54(2):279–294. doi: 10.1083/jcb.54.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Yamazaki R. K., Tolbert N. E. Enzymic characterization of leaf peroxisomes. J Biol Chem. 1970 Oct 10;245(19):5137–5144. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES