Abstract
The metabolism of sucrose to long chain fatty acids in the endosperm of developing castor bean (Ricinus communis L.) seeds requires a combination of cytosolic and proplastid enzymes. The total activity and the subcellular distribution of the intermediate enzymic steps responsible for the conversion of sucrose to pyruvate have been determined. Hexose phosphate synthesis from sucrose occurs in the cytosol along with the first oxidative step in the pentose phosphate pathway, glucose-6-phosphate dehydrogenase. The proplastids contain the necessary complement of glycolytic enzymes to account for the in vivo rates of acetate synthesis from glucose 6-phosphate. These organelles also contain the majority of the cellular 6-phosphogluconate dehydrogenase, transketolase, and transaldolase activities.
The consequence of these enzyme distributions is that glucose 6-phosphate or 6-phosphogluconate produced in the cytosol must be transported into the proplastids where conversion to pyruvate occurs. The unique segregation of the two oxidative steps in the pentose phosphate pathway may be required to meet the metabolic needs of these fat-storing seeds. Compartmentation of glucose-6-phosphate dehydrogenase in the cytosol and 6-phosphogluconate dehydrogenase in the proplastids is discussed in light of the NADPH requirements for fatty acid synthesis in these subcellular locations.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLOSTEIN R., RUTTER W. J. COMPARATIVE STUDIES OF LIVER AND MUSCLE ALDOLASE. II. IMMUNOCHEMICAL AND CHROMATOGRAPHIC DIFFERENTIATION. J Biol Chem. 1963 Oct;238:3280–3285. [PubMed] [Google Scholar]
- Dennis D. T., Green T. R. Soluble and particulate glycolysis in developing castor bean endosperm. Biochem Biophys Res Commun. 1975 Jan 2;64(3):970–975. doi: 10.1016/0006-291x(75)90142-4. [DOI] [PubMed] [Google Scholar]
- Drennan C. H., Canvin D. T. Oleic acid synthesis by a particulate preparation from developing castor oil seeds. Biochim Biophys Acta. 1969;187(2):193–200. doi: 10.1016/0005-2760(69)90027-7. [DOI] [PubMed] [Google Scholar]
- Duggleby R. G., Dennis D. T. Nicotinamide adenine dinucleotide-specific glyceraldehyde 3-phosphate dehydrogenase from Pisum sativum. Assay and steady state kinetics. J Biol Chem. 1974 Jan 10;249(1):167–174. [PubMed] [Google Scholar]
- Grisolia S., Carreras J. Phosphoglycerate mutase from yeast, chicken breast muscle, and kidney (2, 3-PGA-dependent). Methods Enzymol. 1975;42:435–450. doi: 10.1016/0076-6879(75)42149-8. [DOI] [PubMed] [Google Scholar]
- Lendzian K., Bassham J. A. Regulation of glucose-6-phosphate dehydrogenase in spinach chloroplasts by ribulose 1,5-diphosphate and NADPH/NADP+ ratios. Biochim Biophys Acta. 1975 Aug 11;396(2):260–275. doi: 10.1016/0005-2728(75)90040-7. [DOI] [PubMed] [Google Scholar]
- Osmond C. B., Akazawa T., Beevers H. Localization and properties of ribulose diphosphate carboxylase from castor bean endosperm. Plant Physiol. 1975 Feb;55(2):226–230. doi: 10.1104/pp.55.2.226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reid E. E., Lyttle C. R., Canvin D. T., Dennis D. T. Pyruvate dehydrogenase complex activity in proplastids and mitochondria of developing castor bean endosperm. Biochem Biophys Res Commun. 1975 Jan 6;62(1):42–47. doi: 10.1016/s0006-291x(75)80402-5. [DOI] [PubMed] [Google Scholar]
- Scopes R. K. 3-phosphoglycerate kinase of skeletal muscle. Methods Enzymol. 1975;42:127–134. doi: 10.1016/0076-6879(75)42105-x. [DOI] [PubMed] [Google Scholar]
- Wold F. Enolase from fish muscle. Methods Enzymol. 1975;42:329–334. doi: 10.1016/0076-6879(75)42136-x. [DOI] [PubMed] [Google Scholar]