Abstract
Experiments to determine the early labeled photosynthetic products in Elodea canadensis show that after 2 seconds of exposure to NaH14CO3, 45% of the 14C incorporated is located in malate and aspartate. Phosphoglyceric acid and sugars account for 27% of the label during similar exposures. Equivalent amounts of organic acids and C3 cycle products are present after 8 seconds. Four-carbon acids remain relatively unchanged throughout the first 45 seconds of exposure, while sugars increase in a linear fashion. Enzyme assays indicate that ribulose diphosphate and phosphoenolpyruvate carboxylase enzymes are present in a ratio of approximately 2:1. It appears that E. canadensis is able to synthesize significant amounts of four-carbon acids via β-carboxylation and this may play a role in maintaining a pH favorable for carboxylation in aquatic plants.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BASSHAM J. A., BENSON A. A., CALVIN M. The path of carbon in photosynthesis. J Biol Chem. 1950 Aug;185(2):781–787. [PubMed] [Google Scholar]
- Bahr J. T., Jensen R. G. Ribulose Diphosphate Carboxylase from Freshly Ruptured Spinach Chloroplasts Having an in Vivo Km[CO(2)]. Plant Physiol. 1974 Jan;53(1):39–44. doi: 10.1104/pp.53.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benedict C. R., Scott J. R. Photosynthetic carbon metabolism of a marine grass. Plant Physiol. 1976 Jun;57(6):876–880. doi: 10.1104/pp.57.6.876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen T. M., Brown R. H., Black C. C. Photosynthetic CO(2) Fixation Products and Activities of Enzymes Related to Photosynthesis in Bermudagrass and Other Plants. Plant Physiol. 1971 Feb;47(2):199–203. doi: 10.1104/pp.47.2.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chu D. K., Bassham J. A. Regulation of ribulose 1,5-diphosphate carboxylase by substrates and other metabolites: further evidence for several types of binding sites. Plant Physiol. 1975 Apr;55(4):720–726. doi: 10.1104/pp.55.4.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper T. G., Filmer D. The active species of "CO2" utilized by ribulose diphosphate carboxylase. J Biol Chem. 1969 Feb 10;244(3):1081–1083. [PubMed] [Google Scholar]
- Hatch M. D., Slack C. R. Photosynthesis by sugar-cane leaves. A new carboxylation reaction and the pathway of sugar formation. Biochem J. 1966 Oct;101(1):103–111. doi: 10.1042/bj1010103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kennedy R. A., Laetsch W. M. Formation of C-Labeled Alanine from Pyruvate during Short Term Photosynthesis in a C(4) Plant. Plant Physiol. 1974 Oct;54(4):608–611. doi: 10.1104/pp.54.4.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- MUEHLETHALER K., FREY-WYSSLING A. [Development and structure of proplastids]. J Biophys Biochem Cytol. 1959 Dec;6:507–512. [PMC free article] [PubMed] [Google Scholar]
- Maruyama H., Easterday R. L., Chang H. C., Lane M. D. The enzymatic carboxylation of phosphoenolpyruvate. I. Purification and properties of phosphoenolpyruvate carboxylase. J Biol Chem. 1966 May 25;241(10):2405–2412. [PubMed] [Google Scholar]