Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1977 Jul;60(1):86–88. doi: 10.1104/pp.60.1.86

Alteration of Soybean Complex Lipid Biosynthesis by S-Ethyl Dipropylthiocarbamate

Robert E Wilkinson 1, Albert E Smith 1, Burlyn Michel 2
PMCID: PMC542553  PMID: 16660050

Abstract

Soybean (Glycine max [L.] Merr. var. Glabrous D62-7812) plants were grown in aerated Hoagland and Arnon mineral nutrient solution containing 0 or 2.6 μm S-ethyl dipropylthiocarbamate (EPTC) in a growth chamber. After 19 days exposure to EPTC, total leaf fresh weight was reduced 18% by 2.6 μm EPTC while total leaf fatty acid content was reduced 63%. Galactolipid content decreased while phospholipid content increased. Linolenic acid content decreased from 67.5% of the leaf total fatty acid content to 31.5% with 2.6 μm EPTC treatment. Equivalent increases were observed in palmitic (+6.3%), stearic (+1.1%), oleic (14.4%), and linoleic (+13.9%) acids.

Full text

PDF
86

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen C. F., Good P., Davis H. F., Fowler S. D. Plant and chloroplast lipids. I. Separation and composition of major spinach lipids. Biochem Biophys Res Commun. 1964 Apr 22;15(5):424–430. doi: 10.1016/0006-291x(64)90479-6. [DOI] [PubMed] [Google Scholar]
  2. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  3. Jones D., Bowyer D. E., Gresham G. A., Howard A. N. An improved spray reagent for detecting lipids on thin-layer chromatograms. J Chromatogr. 1966 Jun;23(1):172–174. doi: 10.1016/s0021-9673(01)98665-0. [DOI] [PubMed] [Google Scholar]
  4. Kolattukudy P. E., Walton T. J. The biochemistry of plant cuticular lipids. Prog Chem Fats Other Lipids. 1972;13(3):119–175. doi: 10.1016/0079-6832(73)90006-2. [DOI] [PubMed] [Google Scholar]
  5. Pohl P., Glasl H., Wagner H. Zur Analytik pflanzlicher Glyko- und Phospholipoide und ihrer Fettsäuren. I. Eine neue dünnschichtchromatographische Methode zur Trennung pflanzlicher Lipoide und quantitativen Bestimmung ihrer Fettsäure-Zusammensetzung. J Chromatogr. 1970 Jun 24;49(3):488–492. doi: 10.1016/s0021-9673(00)93664-1. [DOI] [PubMed] [Google Scholar]
  6. Roughan P. G. Phosphatidyl choline: Donor of 18-carbon unsaturated fatty acids for glycerolipid biosynthesis. Lipids. 1975 Oct;10(10):609–614. doi: 10.1007/BF02532725. [DOI] [PubMed] [Google Scholar]
  7. Roughan P. G. Turnover of the glycerolipids of pumpkin leaves. The importence of phosphatidylcholine. Biochem J. 1970 Mar;117(1):1–8. doi: 10.1042/bj1170001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Slack C. R., Roughan P. G., Terpstra J. Some properties of a microsomal oleate desaturase from leaves. Biochem J. 1976 Apr 1;155(1):71–80. doi: 10.1042/bj1550071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Slack C. R., Roughan P. G. The kinetics of incorporation in vivo of (14C)acetate and (14C)carbon dioxide into the fatty acids of glycerolipids in developing leaves. Biochem J. 1975 Nov;152(2):217–228. doi: 10.1042/bj1520217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wilkinson R. E. Sicklepod Surface Wax Response to Photoperiod and S-(2,3-Dichloroallyl)diisopropylthiocarbamate (Diallate). Plant Physiol. 1974 Feb;53(2):269–275. doi: 10.1104/pp.53.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES