Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1977 Jul;60(1):157–164. doi: 10.1104/pp.60.1.157

C4 Pathway Photosynthesis at Low Temperature in Cold-tolerant Atriplex Species 1

Martyn M Caldwell a,2, C Barry Osmond a, Dixie L Nott a
PMCID: PMC542565  PMID: 16660028

Abstract

Two species of Atriplex were grown under low temperature (8 C day/6 C night) and high temperature (28 C day/20 C night) regimes. The photosynthetic capacity of these plants was studied as a function of temperature in a leaf gas exchange cuvette. Both species showed substantial photosynthetic capacity between 4 and 10 C and this was not enhanced by growth at low temperatures but rather, was somewhat greater in plants grown at higher temperature. Photosynthetic capacity of low temperature-grown plants at high temperature was greater in Atriplex confertifolia (Torr. and Frem.) S. Watts., a native of cool deserts, than in Atriplex vesicaria (Hew. ex. Benth.) from warmer desert areas. Leaves of both species were also subjected to 14CO2 pulse-chase and steady-state feeding experiments under controlled temperature conditions. These experiments revealed that the kinetics of carbon assimilation through the intermediates of the C4 pathway is not substantially disrupted at low temperature in either species. There was, however, a substantial interchange of label between aspartate and malate at low temperature which was not evident at high temperature. There was also an increase in the pool sizes of the C4 acids involved in photosynthesis of A. confertifolia. Speculation as to the explanation of these changes and their possible significance in promoting low temperature C4 photosynthesis in these plants is presented.

Full text

PDF
157

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brooking I. R., Taylor A. O. Plants under Climatic Stress: V. Chilling and Light Effects on Radiocarbon Exchange between Photosynthetic Intermediates of Sorghum. Plant Physiol. 1973 Aug;52(2):180–182. doi: 10.1104/pp.52.2.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Downton J., Slatyer R. O. Temperature dependence of photosynthesis in cotton. Plant Physiol. 1972 Oct;50(4):518–522. doi: 10.1104/pp.50.4.518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hatch M. D. Synthesis of L-malate-4- 14 C and determination of label in the C-4 carboxyl of L-malate. Anal Biochem. 1972 May;47(1):174–183. doi: 10.1016/0003-2697(72)90290-4. [DOI] [PubMed] [Google Scholar]
  4. Hilliard J. H., West S. H. Starch accumulation associated with growth reduction at low temperatures in a tropical plant. Science. 1970 Apr 24;168(3930):494–496. doi: 10.1126/science.168.3930.494. [DOI] [PubMed] [Google Scholar]
  5. McWilliam J. R., Naylor A. W. Temperature and plant adaptation. I. Interaction of temperature and light in the synthesis of chlorophyll in corn. Plant Physiol. 1967 Dec;42(12):1711–1715. doi: 10.1104/pp.42.12.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Osmond C. B., Harris B. Photorespiration during C 4 photosynthesis. Biochim Biophys Acta. 1971 May 11;234(2):270–282. doi: 10.1016/0005-2728(71)90082-x. [DOI] [PubMed] [Google Scholar]
  7. Shneyour A., Raison J. K., Smillie R. M. The effect of temperature of the rate of photosynthetic electron transfer in chloroplasts of chilling-sensitive and chilling-resistant plants. Biochim Biophys Acta. 1973 Jan 18;292(1):152–161. doi: 10.1016/0005-2728(73)90259-4. [DOI] [PubMed] [Google Scholar]
  8. Sutton B. G., Osmond C. B. Dark Fixation of CO(2) by Crassulacean Plants: Evidence for a Single Carboxylation Step. Plant Physiol. 1972 Sep;50(3):360–365. doi: 10.1104/pp.50.3.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Taylor A. O., Craig A. S. Plants under Climatic Stress: II. Low Temperature, High Light Effects on Chloroplast Ultrastructure. Plant Physiol. 1971 May;47(5):719–725. doi: 10.1104/pp.47.5.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Taylor A. O., Rowley J. A. Plants under Climatic Stress: I. Low Temperature, High Light Effects on Photosynthesis. Plant Physiol. 1971 May;47(5):713–718. doi: 10.1104/pp.47.5.713. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES