Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1977 Aug;60(2):225–229. doi: 10.1104/pp.60.2.225

Plastocyanin as the Possible Site of Photosynthetic Electron Transport Inhibition by Glutaraldehyde 1

Haim Hardt a, Bessel Kok a
PMCID: PMC542585  PMID: 16660065

Abstract

Treatment of spinach chloroplasts with glutaraldehyde causes an inhibition in the electron transport chain between the two photosystems. Measurements of O2 flash yields, pH exchange, and fluorescence induction show that the O2 evolving apparatus, photosystem II and its electron acceptor pool are not affected. The behavior of P700 indicates that its reduction but not its oxidation, is severely inhibited. Cytochrome f is still reducible by photosystem II but also slowly oxidizable by photosystem I. The sensitivity of isolated plastocyanin to glutaraldehyde further supports the conclusion that glutaraldehyde inhibits at the plastocyanin level and thereby induces a break between P700 and cytochrome f.

Full text

PDF
225

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennoun P. Réoxydation du quencher de fluorescence "Q" en présence de 3-(3,4-dichlorophényl)-1,1-diméthylurée. Biochim Biophys Acta. 1970 Sep 1;216(2):357–363. doi: 10.1016/0005-2728(70)90227-6. [DOI] [PubMed] [Google Scholar]
  2. Brand J., Baszynski T., Crane F. L., Krogmann D. W. Selective inhibition of photosynthetic reactions by polycations. J Biol Chem. 1972 May 10;247(9):2814–2819. [PubMed] [Google Scholar]
  3. Doschek W. W., Kok B. Photon trapping in photosystem II of photosynthesis. The fluorescence rise curve in the presence of 3-(3,4-dichlorophenyl)-1,1-dimetnhylurea. Biophys J. 1972 Jul;12(7):832–838. doi: 10.1016/s0006-3495(72)86126-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fowler C. F., Kok B. Proton evolution associated with the photooxidation of water in photosynthesis. Biochim Biophys Acta. 1974 Aug 23;357(2):299–307. doi: 10.1016/0005-2728(74)90068-1. [DOI] [PubMed] [Google Scholar]
  5. Habeeb A. J., Hiramoto R. Reaction of proteins with glutaraldehyde. Arch Biochem Biophys. 1968 Jul;126(1):16–26. doi: 10.1016/0003-9861(68)90554-7. [DOI] [PubMed] [Google Scholar]
  6. Hardt H., Kok B. Stabilization by glutaraldehyde of high-rate electron transport in isolated chloroplasts. Biochim Biophys Acta. 1976 Oct 13;449(1):125–135. doi: 10.1016/0005-2728(76)90012-8. [DOI] [PubMed] [Google Scholar]
  7. Izawa S., Gould J. M., Ort D. R., Felker P., Good N. E. Electron transport and photophosphorylation in chloroplasts as a function of the electron acceptor. 3. A dibromothymoquinone-insensitive phosphorylation reaction associated with photosystem II. Biochim Biophys Acta. 1973 Apr 27;305(1):119–128. doi: 10.1016/0005-2728(73)90237-5. [DOI] [PubMed] [Google Scholar]
  8. Izawa S., Kraayenhof R., Ruuge E. K., Devault D. The site of KCN inhibition in the photosynthetic electron transport pathway. Biochim Biophys Acta. 1973 Sep 26;314(3):328–339. doi: 10.1016/0005-2728(73)90117-5. [DOI] [PubMed] [Google Scholar]
  9. KATOH S., SHIRATORI I., TAKAMIYA A. Purification and some properties of spinach plastocyanin. J Biochem. 1962 Jan;51:32–40. doi: 10.1093/oxfordjournals.jbchem.a127497. [DOI] [PubMed] [Google Scholar]
  10. Kimimura M., Kato S. Studies on electron transport associated with photosystem I. 3. The reduction sites of various Hill oxidants in the photosynthetic electron transport system. Biochim Biophys Acta. 1973 Oct 19;325(1):167–174. doi: 10.1016/0005-2728(73)90162-x. [DOI] [PubMed] [Google Scholar]
  11. Kimimura M., Kato S. Studies on electron transport associated with photosystem I. I. Functional site of plastocyanin: inhibitory effects of HgCl 2 on electron transport and plastocyanin in chloroplasts. Biochim Biophys Acta. 1972 Nov 17;283(2):279–292. doi: 10.1016/0005-2728(72)90244-7. [DOI] [PubMed] [Google Scholar]
  12. Kok B., Forbush B., McGloin M. Cooperation of charges in photosynthetic O2 evolution-I. A linear four step mechanism. Photochem Photobiol. 1970 Jun;11(6):457–475. doi: 10.1111/j.1751-1097.1970.tb06017.x. [DOI] [PubMed] [Google Scholar]
  13. Malkin S., Kok B. Fluorescence induction studies in isolated chloroplasts. I. Number of components involved in the reaction and quantum yields. Biochim Biophys Acta. 1966 Nov 8;126(3):413–432. doi: 10.1016/0926-6585(66)90001-x. [DOI] [PubMed] [Google Scholar]
  14. Marsho T. V., Kok B. Interaction between electron transport components in chloroplasts. Biochim Biophys Acta. 1970 Dec 8;223(2):240–250. doi: 10.1016/0005-2728(70)90181-7. [DOI] [PubMed] [Google Scholar]
  15. Ort D. R., Izawa S., Good N. E., Krogmann D. W. Effects of the plastocyanin antagonists KCN and poly-L-lysine on partial reactions in isolated chloroplasts. FEBS Lett. 1973 Apr 1;31(1):119–122. doi: 10.1016/0014-5793(73)80087-0. [DOI] [PubMed] [Google Scholar]
  16. Ouitrakul R., Izawa S. Electron transport and photophosphorylation in chloroplasts as a function of the electron acceptor. II. Acceptor-specific inhibition by KCN. Biochim Biophys Acta. 1973 Apr 27;305(1):105–118. doi: 10.1016/0005-2728(73)90236-3. [DOI] [PubMed] [Google Scholar]
  17. Radmer R., Kok B. A kinetic analysis of the oxidizing and reducing sides of the O2-evolving system of photosynthesis. Biochim Biophys Acta. 1973 Jul 26;314(1):28–41. doi: 10.1016/0005-2728(73)90061-3. [DOI] [PubMed] [Google Scholar]
  18. Saha S., Ouitrakul R., Izawa S., Good N. E. Electron transport and photophosphorylation in chloroplasts as a function of the electron acceptor. J Biol Chem. 1971 May 25;246(10):3204–3209. [PubMed] [Google Scholar]
  19. West J., Packer L. The effect of glutaraldehyde on light-induced H+ changes, electron transport, and phosphorylation in pea chloroplasts. J Bioenerg. 1970 Oct;1(4):405–412. doi: 10.1007/BF01654577. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES