Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1977 Aug;60(2):230–234. doi: 10.1104/pp.60.2.230

Steady-State Photosynthesis in Alfalfa Leaflets

Effects of Carbon Dioxide Concentration 1

Steven G Platt a,2, Zvi Plaut a,3, James A Bassham a
PMCID: PMC542586  PMID: 16660066

Abstract

When the CO2 concentration to which Medicago sativa L. var. El Unico leaflets were exposed was increased from half-saturation to saturation (doubled rate of photosynthesis), glycolate and glycine production apparently decreased due to inhibition of a portion of the glycolate pathway. Serine and glycerate production was not inhibited. We conclude that serine and glycerate were made from 3-phosphoglycerate and not from glycolate and that the conversion of glycine to serine may not be the major source of photorespiratory CO2 in alfalfa. In investigations of glycolate and photorespiratory metabolism, separate labeling data should be obtained for glycine and serine as those two amino acids may be produced from different precursors and respond differently to environmental perturbations. The increased photosynthetic rate (at saturating CO2) resulted in greater labeling of both soluble and insoluble products. Sucrose labeling increased sharply, but there was no major shift of tracer carbon flow into sucrose relative to other metabolites. The flow of carbon from the reductive pentose phosphate cycle into the production of tricarboxylic acid cycle intermediates and amino acids increased. Only small absolute increases occurred in steady-state pool sizes of metabolites of the reductive pentose phosphate cycle at elevated CO2, providing further evidence that the cycle is well regulated.

Full text

PDF
230

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Forrester M. L., Krotkov G., Nelson C. D. Effect of Oxygen on Photosynthesis, Photorespiration and Respiration in Detached Leaves. II. Corn and other Monocotyledons. Plant Physiol. 1966 Mar;41(3):428–431. doi: 10.1104/pp.41.3.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Forrester M. L., Krotkov G., Nelson C. D. Effect of oxygen on photosynthesis, photorespiration and respiration in detached leaves. I. Soybean. Plant Physiol. 1966 Mar;41(3):422–427. doi: 10.1104/pp.41.3.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hardy R. W., Havelka U. D. Nitrogen fixation research: a key to world food? Science. 1975 May 9;188(4188):633–643. doi: 10.1126/science.188.4188.633. [DOI] [PubMed] [Google Scholar]
  4. Hess J. L., Tolbert N. E. Glycolate, glycine, serine, and glycerate formation during photosynthesis by tobacco leaves. J Biol Chem. 1966 Dec 10;241(23):5705–5711. [PubMed] [Google Scholar]
  5. Krenzer E. G., Moss D. N., Crookston R. K. Carbon dioxide compensation points of flowering plants. Plant Physiol. 1975 Aug;56(2):194–206. doi: 10.1104/pp.56.2.194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Platt S. G., Bassham J. A. Separation of 14 C-labeled glycolate pathway metabolites from higher plant photosynthate. J Chromatogr. 1977 Mar 21;133(2):396–401. doi: 10.1016/s0021-9673(00)83504-9. [DOI] [PubMed] [Google Scholar]
  7. Platt S. G., Plaut Z., Bassham J. A. Analysis of steady state photosynthesis in alfalfa leaves. Plant Physiol. 1976 Jan;57(1):69–73. doi: 10.1104/pp.57.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. RABSON R., TOLBERTNE, KEARNEY P. C. Formation of serine and glyceric acid by the glycolate pathway. Arch Biochem Biophys. 1962 Jul;98:154–163. doi: 10.1016/0003-9861(62)90161-3. [DOI] [PubMed] [Google Scholar]
  9. Randall D. D., Tolbert N. E., Gremel D. 3-Phosphoglycerate Phosphatase in Plants: II. Distribution, Physiological Considerations, and Comparison with P-Glycolate Phosphatase. Plant Physiol. 1971 Oct;48(4):480–487. doi: 10.1104/pp.48.4.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Snyder F. W. Effect of CO(2) Concentration on Glycine and Serine Formation during Photorespiration. Plant Physiol. 1974 Mar;53(3):514–515. doi: 10.1104/pp.53.3.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. VERNON L. P., ARONOFF S. Metabolism of soybean leaves. II. Amino acids formed during short-term photosynthesis. Arch Biochem. 1950 Nov;29(1):179–186. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES