Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1977 Aug;60(2):277–281. doi: 10.1104/pp.60.2.277

Chlorophyll Destruction by the Bisulfite-Oxygen System 1

Galen D Peiser a, Shang Fa Yang a
PMCID: PMC542595  PMID: 16660075

Abstract

Destruction of chlorophyll, as determined by the loss in absorbance at 665 nm, occurred in two in vitro systems in the presence of bisulfite in 76% ethanol. The first system required light and O2 in addition to bisulfite and exhibited an optimum pH of 4. Chlorophyll functioned as a photosensitizer and there was little chlorophyll destruction occurring above pH 5. With 286 μeinsteins m−2 irradiation, approximately 80% of the chlorophyll was destroyed in three minutes. In the second system, chlorophyll destruction in the presence of bisulfite occurred in the dark and required Mn2+, O2, and glycine. Destruction of chlorophyll in this system was much more rapid than in the light system with approximately 70% destruction occurring in two seconds. In both systems, chlorophyll destruction was linked to bisulfite oxidation. The free radical scavengers hydroquinone, butylated hydroxytoluene, 1,2-dihydroxybenzene-3,5-disulfonic acid, and α-tocopherol were effective in inhibiting the destruction of chlorophyll in both systems. The singlet O2 scavengers, 2,5-dimethylfuran and 1,3-diphenylisobenzofuran, were ineffective inhibitors and β-carotene only slightly effective when tested in the light system. The evidence suggests that in these two systems chlorophyll was destroyed by free radicals, probably superoxide radical, which was produced during the aerobic oxidation of bisulfite.

Full text

PDF
277

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arneson R. M. Substrate-induced chemiluminescence of xanthine oxidase and aldehyde oxidase. Arch Biochem Biophys. 1970 Feb;136(2):352–360. doi: 10.1016/0003-9861(70)90205-5. [DOI] [PubMed] [Google Scholar]
  2. Asada K., Kiso K. Initiation of aerobic oxidation of sulfite by illuminated spinach chloroplasts. Eur J Biochem. 1973 Mar 1;33(2):253–257. doi: 10.1111/j.1432-1033.1973.tb02677.x. [DOI] [PubMed] [Google Scholar]
  3. Borg D. C., Fajer J., Felton R. H., Dolphin D. The pi-Cation Radical of Chlorophyll a. Proc Natl Acad Sci U S A. 1970 Oct;67(2):813–820. doi: 10.1073/pnas.67.2.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bors W., Saran M., Lengfelder E., Spöttl R., Michel C. The relevance of the superoxide anion radical in biological systems. Curr Top Radiat Res Q. 1974 May;9(3):247–309. [PubMed] [Google Scholar]
  5. Daines R. H. Sulfur dioxide and plant response. J Occup Med. 1968 Sep;10(9):516–534. doi: 10.1097/00043764-196809000-00015. [DOI] [PubMed] [Google Scholar]
  6. FRIDOVICH I., HANDLER P. Detection of free radicals in illuminated dye solutions by the initiation of sulfite oxidation. J Biol Chem. 1960 Jun;235:1835–1838. [PubMed] [Google Scholar]
  7. Foote C. S. Mechanisms of photosensitized oxidation. There are several different types of photosensitized oxidation which may be important in biological systems. Science. 1968 Nov 29;162(3857):963–970. doi: 10.1126/science.162.3857.963. [DOI] [PubMed] [Google Scholar]
  8. Greenstock C. L., Miller R. W. The oxidation of tiron by superoxide anion. Kinetics of the reaction in aqueous solution in chloroplasts. Biochim Biophys Acta. 1975 Jul 8;396(1):11–16. doi: 10.1016/0005-2728(75)90184-x. [DOI] [PubMed] [Google Scholar]
  9. Iriyama K., Ogura N., Takamiya A. A simple method for extraction and partial purification of chlorophyll from plant material, using dioxane. J Biochem. 1974 Oct;76(4):901–904. [PubMed] [Google Scholar]
  10. KLEBANOFF S. J. The sulfite-activated oxidation of reduced pyridine nucleotides by peroxidase. Biochim Biophys Acta. 1961 Mar 18;48:93–103. doi: 10.1016/0006-3002(61)90519-4. [DOI] [PubMed] [Google Scholar]
  11. Kellogg E. W., 3rd, Fridovich I. Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system. J Biol Chem. 1975 Nov 25;250(22):8812–8817. [PubMed] [Google Scholar]
  12. McCord J. M., Fridovich I. The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J Biol Chem. 1969 Nov 25;244(22):6056–6063. [PubMed] [Google Scholar]
  13. Tappel A. L. Vitamin E and free radical peroxidation of lipids. Ann N Y Acad Sci. 1972 Dec 18;203:12–28. doi: 10.1111/j.1749-6632.1972.tb27851.x. [DOI] [PubMed] [Google Scholar]
  14. Wintermans J. F., de Mots A. Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim Biophys Acta. 1965 Nov 29;109(2):448–453. doi: 10.1016/0926-6585(65)90170-6. [DOI] [PubMed] [Google Scholar]
  15. Yang S. F. Destruction of tryptophan during the aerobic oxidation of sulfite ions. Environ Res. 1973 Dec;6(4):395–402. doi: 10.1016/0013-9351(73)90055-8. [DOI] [PubMed] [Google Scholar]
  16. Yang S. F. Sulfoxide formation from methionine or its sulfide analogs during aerobic oxidation of sulfite. Biochemistry. 1970 Dec 8;9(25):5008–5014. doi: 10.1021/bi00827a027. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES