Abstract
During nodulation of soybean (Glycine max) by Rhizobium japonicum, variations in the activities of two enzymes of heme biosynthesis, δ-aminolevulinic acid synthase (ALAS) and δ-aminolevulinic acid dehydrase (ALAD) are described. δ-Aminolevulinic acid synthase activity is found in the bacteroid fraction of nodules, but is not detected in the plant fraction. Bacteroid ALAS activity parallels heme accumulation during nodule development. δ-Aminolevulinic acid dehydrase activity is found in both bacteroid and plant cytosol fractions. Bacteroid ALAD activity is constant or increases during nodulation while plant ALAD activity falls.
Bacteroid ALAD activity is found in effective, not in inefficient nodules. Plant ALAD activity is found in both effective and inefficient nodules. Plant ALAD activity falls during development of both types of root nodules.
These results support the contention that it is the bacteroid ALAS and ALAD activities, not those of the plant, that are directly involved in formation of leghemoglobin heme, suggesting that the bacteroid may be solely responsible for formation of leghemoglobin heme in the nodule symbiosis.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beale S. I., Castelfranco P. A. The Biosynthesis of delta-Aminolevulinic Acid in Higher Plants: I. Accumulation of delta-Aminolevulinic Acid in Greening Plant Tissues. Plant Physiol. 1974 Feb;53(2):291–296. doi: 10.1104/pp.53.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beale S. I., Gough S. P., Granick S. Biosynthesis of delta-aminolevulinic acid from the intact carbon skeleton of glutamic acid in greening barley. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2719–2723. doi: 10.1073/pnas.72.7.2719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beale S. I. Studies on the Biosynthesis and Metabolism of delta-Aminolevulinic Acid in Chlorella. Plant Physiol. 1971 Sep;48(3):316–319. doi: 10.1104/pp.48.3.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beale S. I. The biosynthesis of delta-aminolevulinic acid in Chlorella. Plant Physiol. 1970 Apr;45(4):504–506. doi: 10.1104/pp.45.4.504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cutting J. A., Schulman H. M. The biogenesis of leghemoglobin. The determinant in the Rhizobium-legume symbiosis for leghemoglobin specificity. Biochim Biophys Acta. 1971 Jan 19;229(1):58–62. [PubMed] [Google Scholar]
- Cutting J. A., Schulman H. M. The control of heme synthesis in soybean root nodules. Biochim Biophys Acta. 1971 Feb 28;261(2):321–327. doi: 10.1016/0304-4165(72)90054-2. [DOI] [PubMed] [Google Scholar]
- Cutting J. A., Schulman H. M. The site of heme synthesis in soybean root nodules. Biochim Biophys Acta. 1969 Dec 30;192(3):486–493. doi: 10.1016/0304-4165(69)90398-5. [DOI] [PubMed] [Google Scholar]
- Dilworth M. J. The plant as the genetic determinant of leghaemoglobin production in the legume root nodule. Biochim Biophys Acta. 1969 Jul 30;184(2):432–441. doi: 10.1016/0304-4165(69)90047-6. [DOI] [PubMed] [Google Scholar]
- GRANICK S., URATA G. Increase in activity of alpha-aminolevulinic acid synthetase in liver mitochondria induced by feeding of 3,5-dicarbethoxy-1,4-dihydrocollidine. J Biol Chem. 1963 Feb;238:821–827. [PubMed] [Google Scholar]
- Godfrey C. A., Dilworth M. J. Haem biosynthesis from ( 14 C)- -aminolaevulinic acid in laboratory-grown and root nodule Rhizobium lupini. J Gen Microbiol. 1971 Dec;69(3):385–390. doi: 10.1099/00221287-69-3-385. [DOI] [PubMed] [Google Scholar]
- Jackson E. K., Evans H. J. Propionate in heme biosynthesis in soybean nodules. Plant Physiol. 1966 Dec;41(10):1673–1680. doi: 10.1104/pp.41.10.1673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson G. V., Evans H. J., Ching T. Enzymes of the glyoxylate cycle in rhizobia and nodules of legumes. Plant Physiol. 1966 Oct;41(8):1330–1336. doi: 10.1104/pp.41.8.1330. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LASCELLES J. The synthesis of enzymes concerned in bacteriochlorophyll formation in growing cultures of Rhodopseudomonas spheroides. J Gen Microbiol. 1960 Dec;23:487–498. doi: 10.1099/00221287-23-3-487. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Levere R. D., Kappas A., Granick S. Stimulation of hemoglobin synthesis in chick blastoderms by certain 5beta androstane and 5beta pregnane steroids. Proc Natl Acad Sci U S A. 1967 Sep;58(3):985–990. doi: 10.1073/pnas.58.3.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAUZERALL D., GRANICK S. The occurrence and determination of delta-amino-levulinic acid and porphobilinogen in urine. J Biol Chem. 1956 Mar;219(1):435–446. [PubMed] [Google Scholar]
- RICHMOND J. E., SALOMON K. Studies on the biosynthesis of hemin in soy bean nodules. Biochim Biophys Acta. 1955 May;17(1):48–55. doi: 10.1016/0006-3002(55)90318-8. [DOI] [PubMed] [Google Scholar]
- SANO S., GRANICK S. Mitochondrial coproporphyrinogen oxidase and protoporphyrin formation. J Biol Chem. 1961 Apr;236:1173–1180. [PubMed] [Google Scholar]
- Tait G. H. Aminolaevulinate synthetase of Micrococcus denitrificans. Purification and properties of the enzyme, and the effect of growth conditions on the enzyme activity in cells. Biochem J. 1973 Feb;131(2):389–403. doi: 10.1042/bj1310389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Troxler R. F., Brown A. S. Metabolism of delta-Aminolevulinic Acid in Red and Blue-Green Algae. Plant Physiol. 1975 Mar;55(3):463–467. doi: 10.1104/pp.55.3.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- URATA G., GRANICK S. Biosynthesis of alpha-aminoketones and the metabolism of aminoacetone. J Biol Chem. 1963 Feb;238:811–820. [PubMed] [Google Scholar]