Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1977 Oct;60(4):492–495. doi: 10.1104/pp.60.4.492

Influence of pH upon the Warburg Effect in Isolated Intact Spinach Chloroplasts

II. Interdependency of Glycolate Synthesis upon pH and Calvin Cycle Intermediate Concentration in the Absence of Carbon Dioxide Photoassimilation 1

Yoke Wah Kow a, J Michael Robinson a,2, Martin Gibbs a
PMCID: PMC542648  PMID: 16660122

Abstract

The light-dependent synthesis of glycolate derived from fructose 1,6-diphosphate, ribose 5-phosphate, or glycerate 3-phosphate was studied in the intact spinach (Spinacia oleracea) chloroplasts in the absence of CO2. Glycolate yield increased with an elevation of O2, pH, and the concentration of the phosphorylated compound supplied. No pH optimum was observed as the pH was increased from 7.4 to 8.5. The average maximal rate of glycolate synthesis was 50 μmoles per milligram chlorophyll per hour while the highest rate observed was 92 with 2.5 mm fructose 1,6-diphosphate in 100% O2. The highest yields of glycolate synthesized from fructose 1,6-diphosphate, ribose 5-phosphate, or glycerate 3-phosphate were 0.14, 0.24, and 0.30, respectively, on a molar basis.

Full text

PDF
492

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen W. R., Gibbs M. Inhibition of CO2 fixation in intact spinach chloroplasts by 3-phosphoglyceric acid. Biochem Biophys Res Commun. 1975 Feb 17;62(4):953–956. doi: 10.1016/0006-291x(75)90415-5. [DOI] [PubMed] [Google Scholar]
  2. Bassham J. A., Kirk M. Sequence of Formation of Phosphoglycolate and Glycolate in Photosynthesizing Chlorella pyrenoidosa. Plant Physiol. 1973 Nov;52(5):407–411. doi: 10.1104/pp.52.5.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Robinson J. M., Gibbs M., Cotler D. N. Influence of pH upon the Warburg Effect in Isolated Intact Spinach Chloroplasts: I. Carbon Dioxide Photoassimilation and Glycolate Synthesis. Plant Physiol. 1977 Apr;59(4):530–534. doi: 10.1104/pp.59.4.530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Robinson J. M., Gibbs M. Photosynthetic intermediates, the warburg effect, and glycolate synthesis in isolated spinach chloroplasts. Plant Physiol. 1974 Jun;53(6):790–797. doi: 10.1104/pp.53.6.790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Takahashi K. A colorimetric method for quantitative determination of glycolic acid with 2, 7-dihydroxynaphthalene. J Biochem. 1972 Mar;71(3):563–565. [PubMed] [Google Scholar]
  6. Werdan K., Heldt H. W., Milovancev M. The role of pH in the regulation of carbon fixation in the chloroplast stroma. Studies on CO2 fixation in the light and dark. Biochim Biophys Acta. 1975 Aug 11;396(2):276–292. doi: 10.1016/0005-2728(75)90041-9. [DOI] [PubMed] [Google Scholar]
  7. Zelitch I. Pathways of carbon fixation in green plants. Annu Rev Biochem. 1975;44:123–145. doi: 10.1146/annurev.bi.44.070175.001011. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES