Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Jul;87(13):5104–5108. doi: 10.1073/pnas.87.13.5104

Cell cycle synchronization: reversible induction of G2 synchrony in cultured rodent and human diploid fibroblasts.

R A Tobey 1, N Oishi 1, H A Crissman 1
PMCID: PMC54270  PMID: 1695009

Abstract

In accord with a set of prespecified principles of cell synchrony induction, a three-step procedure was developed to arrest cells reversibly in the G2 phase of the cell cycle. Cultures of Chinese hamster ovary (CHO) cells were presynchronized in early S phase by sequential treatment with isoleucine deficiency and hydroxyurea blockades; then they were switched to medium supplemented with either of two agents that inhibit DNA topoisomerase II activity by different mechanisms, Hoechst 33342 at 7.5 micrograms/ml for 12 hr or VM-26 at 0.5 micrograms/ml for 8 hr. Up to 95% of the cells accumulated in G2 phase under those conditions. After switch of Hoechst 33342-treated cells to drug-free medium, the cells divided as a highly synchronized cohort of cells within 3 hr. Up to 85% of the cells in a culture of human diploid dermal fibroblasts (HSF-55 cells) could be accumulated in G2 phase by placing cells presynchronized in early-S phase in medium containing Hoechst 33342 at 0.1 micrograms/ml for 10 hr. Reversal of G2 arrest in the HSF-55 cultures resulted in cells dividing synchronously over 3.5 hr. By varying the concentration of Hoechst 33342 and the duration of the treatment period, it was possible to alter the position within G2 phase at which cells accumulated. This synchronization protocol should greatly facilitate study of G2/M biochemical events in mammalian cells, in particular, those associated with cdc2 gene regulation of the onset of mitosis.

Full text

PDF
5104

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arion D., Meijer L., Brizuela L., Beach D. cdc2 is a component of the M phase-specific histone H1 kinase: evidence for identity with MPF. Cell. 1988 Oct 21;55(2):371–378. doi: 10.1016/0092-8674(88)90060-8. [DOI] [PubMed] [Google Scholar]
  2. Cohen S. S., Barner H. D. STUDIES ON UNBALANCED GROWTH IN ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1954 Oct;40(10):885–893. doi: 10.1073/pnas.40.10.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Crissman H. A., Tobey R. A. Cell-cycle analysis in 20 minutes. Science. 1974 Jun 21;184(4143):1297–1298. doi: 10.1126/science.184.4143.1297. [DOI] [PubMed] [Google Scholar]
  4. DiNardo S., Voelkel K., Sternglanz R. DNA topoisomerase II mutant of Saccharomyces cerevisiae: topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proc Natl Acad Sci U S A. 1984 May;81(9):2616–2620. doi: 10.1073/pnas.81.9.2616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Draetta G., Beach D. Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement. Cell. 1988 Jul 1;54(1):17–26. doi: 10.1016/0092-8674(88)90175-4. [DOI] [PubMed] [Google Scholar]
  6. ENGELBERG J. THE DECAY OF SYNCHRONIZATION OF CELL DIVISION. Exp Cell Res. 1964 Dec;36:647–662. doi: 10.1016/0014-4827(64)90320-9. [DOI] [PubMed] [Google Scholar]
  7. Gould K. L., Nurse P. Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature. 1989 Nov 2;342(6245):39–45. doi: 10.1038/342039a0. [DOI] [PubMed] [Google Scholar]
  8. Hildebrand C. E., Tobey R. A. Cell-cycle-specific changes in chromatin organization. Biochem Biophys Res Commun. 1975 Mar 3;63(1):134–139. doi: 10.1016/s0006-291x(75)80021-0. [DOI] [PubMed] [Google Scholar]
  9. Hilwig I., Gropp A. Decondensation of constitutive heterochromatin in L cell chromosomes by a benzimidazole compound ("33258 Hoechst"). Exp Cell Res. 1973 Oct;81(2):474–477. doi: 10.1016/0014-4827(73)90537-5. [DOI] [PubMed] [Google Scholar]
  10. Hirschberg J., Lavi U., Goitein R., Marcus M. The pleiotropic effects of 33258-Hoechst on the cell cycle in Chinese hamster cells in vitro. Exp Cell Res. 1980 Nov;130(1):63–72. doi: 10.1016/0014-4827(80)90042-7. [DOI] [PubMed] [Google Scholar]
  11. Lee M., Nurse P. Cell cycle control genes in fission yeast and mammalian cells. Trends Genet. 1988 Oct;4(10):287–290. doi: 10.1016/0168-9525(88)90171-0. [DOI] [PubMed] [Google Scholar]
  12. Liu L. F. DNA topoisomerase poisons as antitumor drugs. Annu Rev Biochem. 1989;58:351–375. doi: 10.1146/annurev.bi.58.070189.002031. [DOI] [PubMed] [Google Scholar]
  13. Lohka M. J., Hayes M. K., Maller J. L. Purification of maturation-promoting factor, an intracellular regulator of early mitotic events. Proc Natl Acad Sci U S A. 1988 May;85(9):3009–3013. doi: 10.1073/pnas.85.9.3009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lohka M. J. Mitotic control by metaphase-promoting factor and cdc proteins. J Cell Sci. 1989 Feb;92(Pt 2):131–135. doi: 10.1242/jcs.92.2.131. [DOI] [PubMed] [Google Scholar]
  15. MAZIA D. SYNTHETIC ACTIVITIES LEADING TO MITOSIS. J Cell Physiol. 1963 Oct;62:SUPPL1–SUPPL1:140. doi: 10.1002/jcp.1030620412. [DOI] [PubMed] [Google Scholar]
  16. Marcus M., Nielsén K., Goitein R., Gropp A. Pattern of condensation of mouse and Chinese hamster chromosomes in G2 and mitosis of 33258-Hoechst-treated cells. Exp Cell Res. 1979 Aug;122(1):191–201. doi: 10.1016/0014-4827(79)90574-3. [DOI] [PubMed] [Google Scholar]
  17. Mineo C., Murakami Y., Ishimi Y., Hanaoka F., Yamada M. Isolation and analysis of a mammalian temperature-sensitive mutant defective in G2 functions. Exp Cell Res. 1986 Nov;167(1):53–62. doi: 10.1016/0014-4827(86)90203-x. [DOI] [PubMed] [Google Scholar]
  18. Murphy J. S., D'Alisa R., Gershey E. L., Landsberger F. R. Kinetics of desynchronization and distribution of generation times in synchronized cell populations. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4404–4407. doi: 10.1073/pnas.75.9.4404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Murray A. W., Solomon M. J., Kirschner M. W. The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature. 1989 May 25;339(6222):280–286. doi: 10.1038/339280a0. [DOI] [PubMed] [Google Scholar]
  20. Neidle S., Pearl L. H., Skelly J. V. DNA structure and perturbation by drug binding. Biochem J. 1987 Apr 1;243(1):1–13. doi: 10.1042/bj2430001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nelson E. M., Tewey K. M., Liu L. F. Mechanism of antitumor drug action: poisoning of mammalian DNA topoisomerase II on DNA by 4'-(9-acridinylamino)-methanesulfon-m-anisidide. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1361–1365. doi: 10.1073/pnas.81.5.1361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nicolini C., Ajiro K., Borun T. W., Baserga R. Chromatin changes during the cell cycle of HeHa cells. J Biol Chem. 1975 May 10;250(9):3381–3385. [PubMed] [Google Scholar]
  23. Pederson T. Chromatin structure and the cell cycle. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2224–2228. doi: 10.1073/pnas.69.8.2224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Prentice D. A., Tobey R. A., Gurley L. R. Cell cycle variations in chromatin structure detected by DNase I. Exp Cell Res. 1985 Mar;157(1):242–252. doi: 10.1016/0014-4827(85)90166-1. [DOI] [PubMed] [Google Scholar]
  25. Ross W. E. DNA topoisomerases as targets for cancer therapy. Biochem Pharmacol. 1985 Dec 15;34(24):4191–4195. doi: 10.1016/0006-2952(85)90273-4. [DOI] [PubMed] [Google Scholar]
  26. Rowley R., Kort L. Novobiocin, nalidixic acid, etoposide, and 4'-(9-acridinylamino)methanesulfon-m-anisidide effects on G2 and mitotic Chinese hamster ovary cell progression. Cancer Res. 1989 Sep 1;49(17):4752–4757. [PubMed] [Google Scholar]
  27. Stallings R. L., Crawford B. D., Tobey R. A., Tesmer J., Hildebrand C. E. 5-Azacytidine-induced conversion to cadmium resistance correlates with early S phase replication of inactive metallothionein genes in synchronized CHO cells. Somat Cell Mol Genet. 1986 Sep;12(5):423–432. doi: 10.1007/BF01539913. [DOI] [PubMed] [Google Scholar]
  28. Straney D. C., Crothers D. M. Effect of drug-DNA interactions upon transcription initiation at the lac promoter. Biochemistry. 1987 Apr 7;26(7):1987–1995. doi: 10.1021/bi00381a031. [DOI] [PubMed] [Google Scholar]
  29. Taljanidisz J., Popowski J., Sarkar N. Temporal order of gene replication in Chinese hamster ovary cells. Mol Cell Biol. 1989 Jul;9(7):2881–2889. doi: 10.1128/mcb.9.7.2881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tobey R. A., Anderson E. C., Petersen D. F. The effect of thymidine on the duration of G1 in Chinese hamster cells. J Cell Biol. 1967 Oct;35(1):53–59. doi: 10.1083/jcb.35.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tobey R. A., Crissman H. A. Preparation of large quantities of synchronized mammalian cells in late G1 in the pre-DNA replicative phase of the cell cycle. Exp Cell Res. 1972 Dec;75(2):460–464. doi: 10.1016/0014-4827(72)90453-3. [DOI] [PubMed] [Google Scholar]
  32. Tobey R. A. Production and characterization of mammalian cells reversibly arrested in G1 by growth in isoleucine-deficient medium. Methods Cell Biol. 1973;6:67–112. doi: 10.1016/s0091-679x(08)60048-5. [DOI] [PubMed] [Google Scholar]
  33. Tobey R. A., Valdez J. G., Crissman H. A. Synchronization of human diploid fibroblasts at multiple stages of the cell cycle. Exp Cell Res. 1988 Dec;179(2):400–416. doi: 10.1016/0014-4827(88)90279-0. [DOI] [PubMed] [Google Scholar]
  34. Ward D. C., Reich E., Goldberg I. H. Base specificity in the interaction of polynucleotides with antibiotic drugs. Science. 1965 Sep 10;149(3689):1259–1263. doi: 10.1126/science.149.3689.1259. [DOI] [PubMed] [Google Scholar]
  35. Wittenberg C., Reed S. I. Control of the yeast cell cycle is associated with assembly/disassembly of the Cdc28 protein kinase complex. Cell. 1988 Sep 23;54(7):1061–1072. doi: 10.1016/0092-8674(88)90121-3. [DOI] [PubMed] [Google Scholar]
  36. Woynarowski J. M., McHugh M., Sigmund R. D., Beerman T. A. Modulation of topoisomerase II catalytic activity by DNA minor groove binding agents distamycin, Hoechst 33258, and 4',6-diamidine-2-phenylindole. Mol Pharmacol. 1989 Feb;35(2):177–182. [PubMed] [Google Scholar]
  37. Woynarowski J. M., Sigmund R. D., Beerman T. A. DNA minor groove binding agents interfere with topoisomerase II mediated lesions induced by epipodophyllotoxin derivative VM-26 and acridine derivative m-AMSA in nuclei from L1210 cells. Biochemistry. 1989 May 2;28(9):3850–3855. doi: 10.1021/bi00435a034. [DOI] [PubMed] [Google Scholar]
  38. Yamada M., Hanaoka F. Periodic changes in the association of mammalian DNA with the membrane during the cell cycle. Nat New Biol. 1973 Jun 20;243(129):227–230. doi: 10.1038/newbio243227a0. [DOI] [PubMed] [Google Scholar]
  39. Yunis J. J. Mid-prophase human chromosomes. The attainment of 2000 bands. Hum Genet. 1981;56(3):293–298. doi: 10.1007/BF00274682. [DOI] [PubMed] [Google Scholar]
  40. Yunis J. J., Sawyer J. R., Ball D. W. The characterization of high-resolution G-banded chromosomes of man. Chromosoma. 1978 Aug 14;67(4):293–307. doi: 10.1007/BF00285963. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES