Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Jul;87(13):5114–5118. doi: 10.1073/pnas.87.13.5114

Beta 2-adrenergic receptors are colocalized and coregulated with "whisker barrels" in rat somatosensory cortex.

P Vos 1, D Kaufmann 1, P J Hand 1, B B Wolfe 1
PMCID: PMC54272  PMID: 2164222

Abstract

Autoradiography has been used to visualize independently the subtypes of beta-adrenergic receptors in rat somatosensory cortex. Beta 2-Adrenergic receptors, but not beta 1-adrenergic receptors colocalize with "whisker barrels" in this tissue. Thus, each whisker sends a specific multisynaptic pathway to the somatosensory cortex that can be histochemically visualized and only one subtype of beta-adrenergic receptor is specifically associated with this cortical representation. Additionally, neonatal lesion of any or all of the whisker follicles results in loss of the corresponding barrel(s) as shown by histochemical markers. This loss is paralleled by a similar loss in the organization of beta 2-adrenergic receptors in the somatosensory cortex. Other results indicate that these beta 2-adrenergic receptors are not involved in moment-to-moment signal transmission in this pathway and, additionally, are not involved in a gross way in the development of whisker-barrel array.

Full text

PDF
5114

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Durham D., Woolsey T. A. Effects of neonatal whisker lesions on mouse central trigeminal pathways. J Comp Neurol. 1984 Mar 1;223(3):424–447. doi: 10.1002/cne.902230308. [DOI] [PubMed] [Google Scholar]
  2. Durham D., Woolsey T. A. Functional organization in cortical barrels of normal and vibrissae-damaged mice: a (3H) 2-deoxyglucose study. J Comp Neurol. 1985 May 1;235(1):97–110. doi: 10.1002/cne.902350108. [DOI] [PubMed] [Google Scholar]
  3. Jeanmonod D., Rice F. L., Van der Loos H. Mouse somatosensory cortex: alterations in the barrelfield following receptor injury at different early postnatal ages. Neuroscience. 1981;6(8):1503–1535. doi: 10.1016/0306-4522(81)90222-0. [DOI] [PubMed] [Google Scholar]
  4. Kasamatsu T., Shirokawa T. Involvement of beta-adrenoreceptors in the shift of ocular dominance after monocular deprivation. Exp Brain Res. 1985;59(3):507–514. doi: 10.1007/BF00261341. [DOI] [PubMed] [Google Scholar]
  5. Killackey H. P., Belford G. R. The formation of afferent patterns in the somatosensory cortex of the neonatal rat. J Comp Neurol. 1979 Jan 15;183(2):285–303. doi: 10.1002/cne.901830206. [DOI] [PubMed] [Google Scholar]
  6. Kossut M., Hand P. J., Greenberg J., Hand C. L. Single vibrissal cortical column in SI cortex of rat and its alterations in neonatal and adult vibrissa-deafferented animals: a quantitative 2DG study. J Neurophysiol. 1988 Aug;60(2):829–852. doi: 10.1152/jn.1988.60.2.829. [DOI] [PubMed] [Google Scholar]
  7. Lidov H. G., Rice F. L., Molliver M. E. The organization of the catecholamine innervation of somatosensory cortex: the barrel field of the mouse. Brain Res. 1978 Sep 29;153(3):577–584. doi: 10.1016/0006-8993(78)90341-4. [DOI] [PubMed] [Google Scholar]
  8. Loeb E. P., Chang F. F., Greenough W. T. Effects of neonatal 6-hydroxydopamine treatment upon morphological organization of the posteromedial barrel subfield in mouse somatosensory cortex. Brain Res. 1987 Feb 10;403(1):113–120. doi: 10.1016/0006-8993(87)90129-6. [DOI] [PubMed] [Google Scholar]
  9. Morris G., Seidler F. J., Slotkin T. A. Stimulation of ornithine decarboxylase by histamine or norepinephrine in brain regions of the developing rat: evidence for biogenic amines as trophic agents in neonatal brain development. Life Sci. 1983 Apr 4;32(14):1565–1571. doi: 10.1016/0024-3205(83)90862-7. [DOI] [PubMed] [Google Scholar]
  10. Morris G., Slotkin T. A. Beta-2 adrenergic control of ornithine decarboxylase activity in brain regions of the developing rat. J Pharmacol Exp Ther. 1985 Apr;233(1):141–147. [PubMed] [Google Scholar]
  11. NACHLAS M. M., TSOU K. C., DE SOUZA E., CHENG C. S., SELIGMAN A. M. Cytochemical demonstration of succinic dehydrogenase by the use of a new p-nitrophenyl substituted ditetrazole. J Histochem Cytochem. 1957 Jul;5(4):420–436. doi: 10.1177/5.4.420. [DOI] [PubMed] [Google Scholar]
  12. Rainbow T. C., Parsons B., Wolfe B. B. Quantitative autoradiography of beta 1- and beta 2-adrenergic receptors in rat brain. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1585–1589. doi: 10.1073/pnas.81.5.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rice F. L., Gomez C., Barstow C., Burnet A., Sands P. A comparative analysis of the development of the primary somatosensory cortex: interspecies similarities during barrel and laminar development. J Comp Neurol. 1985 Jun 22;236(4):477–495. doi: 10.1002/cne.902360405. [DOI] [PubMed] [Google Scholar]
  14. Slotkin T. A., Grignolo A., Whitmore W. L., Lerea L., Trepanier P. A., Barnes G. A., Weigel S. J., Seidler F. J., Bartolome J. Impaired development of central and peripheral catecholamine neurotransmitter systems in preweanling rats treated with alpha-difluoromethylornithine, a specific irreversible inhibitor of ornithine decarboxylase. J Pharmacol Exp Ther. 1982 Sep;222(3):746–751. [PubMed] [Google Scholar]
  15. Vos P., Davenport P. A., Artymyshyn R. P., Frazer A., Wolfe B. B. Selective regulation of beta-2 adrenergic receptors by the chronic administration of the lipophilic beta adrenergic receptor agonist clenbuterol: an autoradiographic study. J Pharmacol Exp Ther. 1987 Aug;242(2):707–712. [PubMed] [Google Scholar]
  16. Welker C. Microelectrode delineation of fine grain somatotopic organization of (SmI) cerebral neocortex in albino rat. Brain Res. 1971 Mar 5;26(2):259–275. [PubMed] [Google Scholar]
  17. White E. L. Identified neurons in mouse Sml cortex which are postsynaptic to thalamocortical axon terminals: a combined Golgi-electron microscopic and degeneration study. J Comp Neurol. 1978 Oct 1;181(3):627–661. doi: 10.1002/cne.901810310. [DOI] [PubMed] [Google Scholar]
  18. Wolfe B. B., Harden T. K., Sporn J. R., Molinoff P. B. Presynaptic modulation of beta adrenergic receptors in rat cerebral cortex after treatment with antidepressants. J Pharmacol Exp Ther. 1978 Nov;207(2):446–457. [PubMed] [Google Scholar]
  19. Wong-Riley M. T., Welt C. Histochemical changes in cytochrome oxidase of cortical barrels after vibrissal removal in neonatal and adult mice. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2333–2337. doi: 10.1073/pnas.77.4.2333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Woolsey T. A., Dierker M. L., Wann D. F. Mouse SmI cortex: qualitative and quantitative classification of golgi-impregnated barrel neurons. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2165–2169. doi: 10.1073/pnas.72.6.2165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Woolsey T. A., Van der Loos H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 1970 Jan 20;17(2):205–242. doi: 10.1016/0006-8993(70)90079-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES