Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1977 Dec;60(6):812–816. doi: 10.1104/pp.60.6.812

Root and Nodule Respiration in Relation to Acetylene Reduction in Intact Nodulated Peas 1

John D Mahon a
PMCID: PMC542724  PMID: 16660191

Abstract

Inoculated pea plants (Pisum sativum L.) were grown with N-free nutrients in a controlled environment room and rates of respiratory CO2 evolution and C2H2 reduction by the intact nodulated roots were determined. Experiments followed changes related to diurnal cycles, light and dark treatments, partial defoliation, aging of plants and NH4NO3 addition. In all experiments, changes in C2H2 reduction were associated with parallel changes in the respiration rate, although in all but the defoliation experiment there was a basal level of respiration which was independent of the rate of C2H2 reduction. In conditions which affected growth or plant size as well as C2H2 reduction, respiration changed by an average of 0.42 mg CO2 (μmol C2H2 reduced)−1. However, some treatments decreased C2H2 reduction without greatly changing the growth and in these conditions respiration was decreased by an average of 0.27 mg CO2 (μmol C2H2 reduced)−1. While this value may also include some respiration associated with other processes, it is proposed that it more closely estimates respiration directly associated with energy utilization for acetylene reduction; whereas the higher value includes respiration related to maintenance and growth processes as well.

Full text

PDF
812

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ching T. M., Hedtke S., Russell S. A., Evans H. J. Energy State and Dinitrogen Fixation in Soybean Nodules of Dark-grown Plants. Plant Physiol. 1975 Apr;55(4):796–798. doi: 10.1104/pp.55.4.796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hardy R. W., Havelka U. D. Nitrogen fixation research: a key to world food? Science. 1975 May 9;188(4188):633–643. doi: 10.1126/science.188.4188.633. [DOI] [PubMed] [Google Scholar]
  3. LaRue T. A., Kurz W. G. Estimation of nitrogenase in intact legumes. Can J Microbiol. 1973 Feb;19(2):304–305. doi: 10.1139/m73-049. [DOI] [PubMed] [Google Scholar]
  4. MORTENSON L. E. FERREDOXIN AND ATP, REQUIREMENTS FOR NITROGEN FIXATION IN CELL-FREE EXTRACTS OF CLOSTRIDIUM PASTEURIANUM. Proc Natl Acad Sci U S A. 1964 Aug;52:272–279. doi: 10.1073/pnas.52.2.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Schubert K. R., Evans H. J. Hydrogen evolution: A major factor affecting the efficiency of nitrogen fixation in nodulated symbionts. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1207–1211. doi: 10.1073/pnas.73.4.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Thornley J. H. Respiration, growth and maintenance in plants. Nature. 1970 Jul 18;227(5255):304–305. doi: 10.1038/227304b0. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES