Abstract
The herbicides trifluralin (α,α,α-trifluoro-2,6-dinitro-N, N-dipropyl-p-toluidine) and diallate (S-[2,3-dichloroallyl] diisopropylthiocarbamate) inhibit electron transport, ATP synthesis, and cytochrome f reduction by isolated spinach (Spinacia oleracea L.) chloroplasts. Both compounds inhibit noncyclic electron transport from H2O to ferricyanide more than 90% in coupled chloroplasts at concentrations less than 50 μm. Neither herbicide inhibits electron transport in assays utilizing only photosystem I activity, and the photosystem II reaction elicited by addition of oxidized p-phenylenediamine or 2,5-dimethylquinone is only partially inhibited by herbicide concentrations which block electron flow from H2O to ferricyanide. Inhibition of ATP synthesis parallels inhibition of electron flow in all noncyclic assay systems, and cyclic ATP synthesis catalyzed by either diaminodurene or phenazine metho-sulfate is susceptible to inhibition by both herbicides. These results indicate that trifluralin and diallate both inhibit electron flow in isolated chloroplasts at a point in the electron transport chain between the two photosystems.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Draber W., Trebst A., Harth E. On a new inhibitor of photosynthetic electron-transport in isolated chloroplasts. Z Naturforsch B. 1970 Oct;25(10):1157–1159. doi: 10.1515/znb-1970-1018. [DOI] [PubMed] [Google Scholar]
- Gould J. M., Izawa S. Photosystem-II electron transport and phosphorylation with dibromothymoquinone as the electron acceptor. Eur J Biochem. 1973 Aug 1;37(1):185–192. doi: 10.1111/j.1432-1033.1973.tb02974.x. [DOI] [PubMed] [Google Scholar]
- Guikema J. A., Yocum C. F. The mechanism of quinonediimine acceptor activity in photosynthetic electron transport. Biochemistry. 1976 Jan 27;15(2):362–367. doi: 10.1021/bi00647a019. [DOI] [PubMed] [Google Scholar]
- Izawa S., Gould J. M., Ort D. R., Felker P., Good N. E. Electron transport and photophosphorylation in chloroplasts as a function of the electron acceptor. 3. A dibromothymoquinone-insensitive phosphorylation reaction associated with photosystem II. Biochim Biophys Acta. 1973 Apr 27;305(1):119–128. doi: 10.1016/0005-2728(73)90237-5. [DOI] [PubMed] [Google Scholar]
- Lozier R. H., Butler W. L. The effects of dibromothymoquinone on fluorescence and electron transport of spinach chloroplasts. FEBS Lett. 1972 Oct 1;26(1):161–164. doi: 10.1016/0014-5793(72)80564-7. [DOI] [PubMed] [Google Scholar]
- Ouitrakul R., Izawa S. Electron transport and photophosphorylation in chloroplasts as a function of the electron acceptor. II. Acceptor-specific inhibition by KCN. Biochim Biophys Acta. 1973 Apr 27;305(1):105–118. doi: 10.1016/0005-2728(73)90236-3. [DOI] [PubMed] [Google Scholar]
- TAUSSKY H. H., SHORR E. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem. 1953 Jun;202(2):675–685. [PubMed] [Google Scholar]
- WESSELS J. S., VAN DER VEEN R. The action of some derivatives of phenylurethan and of 3-phenyl-1, 1-dimethylurea on the Hill reaction. Biochim Biophys Acta. 1956 Mar;19(3):548–549. doi: 10.1016/0006-3002(56)90481-4. [DOI] [PubMed] [Google Scholar]
- Yocum C. F. Photosystem II - mediated cyclic photophosphorylation. Biochem Biophys Res Commun. 1976 Feb 9;68(3):828–835. doi: 10.1016/0006-291x(76)91220-1. [DOI] [PubMed] [Google Scholar]