Abstract
Seedlings of winter wheat (Triticum aestivum L. cv. Kharkov) were acclimated at 2 C in the dark in the presence of two inhibitors of linolenic acid synthesis, 4-chloro-5(dimethylamino)-2-phenyl-3(2H)pyridazinone-(BASF 13-338) and 4-chloro-5(dimethylamino)-2-(α,α,α-trifluoro-m-tolyl)- 3(2H)pyridazinone (Sandoz 6706). Although the increase in the proportion of linolenic acid generally observed at low temperature was completely inhibited, the development of freezing tolerance was unaffected. These results demonstrated that an enrichment in linolenic acid is not a prerequisite for low temperature acclimation.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Heber U. W., Santarius K. A. Loss of Adenosine Triphosphate Synthesis Caused by Freezing and Its Relationship to Frost Hardiness Problems. Plant Physiol. 1964 Sep;39(5):712–719. doi: 10.1104/pp.39.5.712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hilton J. L., John J. B., Christiansen M. N. Interactions of lipoidal materials and a pyridazinone inhibitor of chloroplast development. Plant Physiol. 1971 Aug;48(2):171–177. doi: 10.1104/pp.48.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- John J. B. Manipulation of galactolipid Fatty Acid composition with substituted pyridazinones. Plant Physiol. 1976 Jan;57(1):38–40. doi: 10.1104/pp.57.1.38. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lyons J. M., Asmundson C. M. Solidification of unsaturated/saturated fatty acid mixtures and its relationship to chilling sensitivity in plants. J Am Oil Chem Soc. 1965 Dec;42(12):1056–1058. doi: 10.1007/BF02636905. [DOI] [PubMed] [Google Scholar]
- Miller R. W., de la Roche I., Pomeroy M. K. Structural and functional responses of wheat mitochondrial membranes to growth at low temperatures. Plant Physiol. 1974 Mar;53(3):426–433. doi: 10.1104/pp.53.3.426. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Redshaw E. S., Zalik S. Changes in lipids of cereal seedlings during vernalization. Can J Biochem. 1968 Sep;46(9):1093–1097. doi: 10.1139/o68-163. [DOI] [PubMed] [Google Scholar]
- Siminovitch D., Singh J., de la Roche I. A. Studies on membranes in plant cells resistant to extreme freezing. I. Augmentation of phospholipids and membrane substance without changes in unsaturation of fatty acids during hardening of black locust bark. Cryobiology. 1975 Apr;12(2):144–153. doi: 10.1016/s0011-2240(75)80006-x. [DOI] [PubMed] [Google Scholar]
- Singh J., de La Roche I. A., Siminovitch D. Differential scanning calorimeter analyses of membrane lipids isolated from hardened and unhardened black locust bark and from winter rye seedlings. Cryobiology. 1977 Oct;14(5):620–624. doi: 10.1016/0011-2240(77)90173-0. [DOI] [PubMed] [Google Scholar]
- Singh J., de la Roche A. I., Siminovitch D. Relative insensitivity of mitochondria in hardened and nonhardened rye coleoptile cells to freezing in situ. Plant Physiol. 1977 Nov;60(5):713–715. doi: 10.1104/pp.60.5.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willemot C., Hope H. J., Williams R. J., Michaud R. Changes in fatty acid composition of winter wheat during frost hardening. Cryobiology. 1977 Feb;14(1):87–93. doi: 10.1016/0011-2240(77)90126-2. [DOI] [PubMed] [Google Scholar]
- Willemot C. Simultaneous Inhibition of Linolenic Acid Synthesis in Winter Wheat Roots and Frost Hardening by BASF 13-338, a Derivative of Pyridazinone. Plant Physiol. 1977 Jul;60(1):1–4. doi: 10.1104/pp.60.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de la Roche I. A., Pomeroy M. K., Andrews C. J. Changes in fatty acid composition in wheat cultivars of contrasting hardiness. Cryobiology. 1975 Oct;12(5):506–512. doi: 10.1016/0011-2240(75)90032-2. [DOI] [PubMed] [Google Scholar]